全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Harnessing the Potential of Halogenated Natural Product Biosynthesis by Mangrove-Derived Actinomycetes

DOI: 10.3390/md11103875

Keywords: mangrove-derived actinomycetes, genome mining, halogenase, enduracidin, ansamycin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mangrove-derived actinomycetes are promising sources of bioactive natural products. In this study, using homologous screening of the biosynthetic genes and anti-microorganism/tumor assaying, 163 strains of actinomycetes isolated from mangrove sediments were investigated for their potential to produce halogenated metabolites. The FADH 2-dependent halogenase genes, identified in PCR-screening, were clustered in distinct clades in the phylogenetic analysis. The coexistence of either polyketide synthase (PKS) or nonribosomal peptide synthetase (NRPS) as the backbone synthetases in the strains harboring the halogenase indicated that these strains had the potential to produce structurally diversified antibiotics. As a validation, a new enduracidin producer, S treptomyces atrovirens MGR140, was identified and confirmed by gene disruption and HPLC analysis. Moreover, a putative ansamycin biosynthesis gene cluster was detected in Streptomyces albogriseolus MGR072. Our results highlight that combined genome mining is an efficient technique to tap promising sources of halogenated natural products synthesized by mangrove-derived actinomycetes.

References

[1]  Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260, doi:10.1038/387253a0.
[2]  Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251, doi:10.1016/S0065-2881(01)40003-4.
[3]  Remya, M.; Vijayakumar, R. Isolation and characterization of marine antagonistic actinomycetes from west coast of India. Facta Universitatis Ser. Med. Biol. 2008, 15, 13–19.
[4]  Hong, K.; Gao, A.-H.; Xie, Q.-Y.; Gao, H.G.; Zhuang, L.; Lin, H.-P.; Yu, H.-P.; Li, J.; Yao, X.-S.; Goodfellow, M. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs 2009, 7, 24–44, doi:10.3390/md7010024.
[5]  Dias, A.C.; Andreote, F.D.; Dini-Andreote, F.; Lacava, P.T.; Sá, A.L.; Melo, I.S.; Azevedo, J.L.; Araújo, W.L. Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J. Microbiol. Biotechnol. 2009, 25, 1305–1311, doi:10.1007/s11274-009-0013-7.
[6]  Huang, H.; Lv, J.; Hu, Y.; Fang, Z.; Zhang, K.; Bao, S. Micromonospora rifamycinica sp. nov., a novel actinomycete from mangrove sediment. Int. J. Syst. Evol. Microbiol. 2008, 58, 17–20, doi:10.1099/ijs.0.64484-0.
[7]  Hornung, A.; Bertazzo, M.; Dziarnowski, A.; Schneider, K.; Welzel, K.; Wohlert, S.E.; Holzenk?mpfer, M.; Nicholson, G.J.; Bechthold, A.; Süssmuth, R.D. A Genomic Screening Approach to the Structure-Guided Identification of Drug Candidates from Natural Sources. Chembiochem 2007, 8, 757–766, doi:10.1002/cbic.200600375.
[8]  Wang, G.; Zhang, H.; Sun, G.; Wu, L.; Zhang, J.; Wang, Y. A new method for rapid identification of ansamycin compounds by inactivating KLM gene clusters in potential ansamycin-producing actinomyces. J. Appl. Microbiol. 2012, 112, 353–362, doi:10.1111/j.1365-2672.2011.05206.x.
[9]  Zerikly, M.; Challis, G.L. Strategies for the discovery of new natural products by genome mining. Chembiochem 2009, 10, 625–633, doi:10.1002/cbic.200800389.
[10]  Walsh, C.T.; Fischbach, M.A. Natural products version 2.0: Connecting genes to molecules. J. Am. Chem. Soc. 2010, 132, 2469–2493, doi:10.1021/ja909118a.
[11]  Du, L.; Lou, L. PKS and NRPS release mechanisms. Nat. Prod. Rep. 2010, 27, 255–278, doi:10.1039/b912037h.
[12]  Olano, C.; Méndez, C.; Salas, J.A. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat. Prod. Rep. 2010, 27, 571–616, doi:10.1039/b911956f.
[13]  Ouyang, Y.; Wu, H.; Xie, L.; Wang, G.; Dai, S.; Chen, M.; Yang, K.; Li, X. A method to type the potential angucycline producers in actinomycetes isolated from marine sponges. Antonie van Leeuwenhoek 2011, 99, 807–815, doi:10.1007/s10482-011-9554-5.
[14]  Liu, T.; Cane, D.E.; Deng, Z. The enzymology of polyether biosynthesis. Methods Enzymol. 2009, 459, 187–214, doi:10.1016/S0076-6879(09)04609-6.
[15]  Jiang, C.; Wang, H.; Kang, Q.; Liu, J.; Bai, L. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211. Appl. Environ. Microbiol. 2012, 78, 994–1003, doi:10.1128/AEM.06701-11.
[16]  Neumann, C.S.; Fujimori, D.G.; Walsh, C.T. Halogenation strategies in natural product biosynthesis. Chem. Biol. 2008, 15, 99–109, doi:10.1016/j.chembiol.2008.01.006.
[17]  Gao, P.; Huang, Y. Detection, distribution, and organohalogen compound discovery implications of the reduced flavin adenine dinucleotide-dependent halogenase gene in major filamentous actinomycete taxonomic groups. Appl. Environ. Microbiol. 2009, 75, 4813–4820, doi:10.1128/AEM.02958-08.
[18]  Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 2003, 7, 285–295, doi:10.1016/S1367-5931(03)00020-6.
[19]  Schwarzer, D.; Finking, R.; Marahiel, M.A. Nonribosomal peptides: From genes to products. Nat. Prod. Rep. 2003, 20, 275–287, doi:10.1039/b111145k.
[20]  González, I.; Ayuso-Sacido, A.; Anderson, A.; Genilloud, O. Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 2005, 54, 401–415, doi:10.1016/j.femsec.2005.05.004.
[21]  Li, X.-L.; Xu, M.-J.; Zhao, Y.-L.; Xu, J. A Novel Benzo [f][1,7] Naphthyridine Produced by Streptomyces Albogriseolus from Mangrove Sediments. Molecules 2010, 15, 9298–9307, doi:10.3390/molecules15129298.
[22]  Xu, J.; Wang, Y.; Xie, S.-J.; Xu, J.; Xiao, J.; Ruan, J.-S. Streptomyces xiamenensis sp. nov., isolated from mangrove sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 472–476, doi:10.1099/ijs.0.000497-0.
[23]  Xu, M.-J.; Liu, X.-J.; Zhao, Y.-L.; Liu, D.; Xu, Z.-H.; Lang, X.-M.; Ao, P.; Lin, W.-H.; Yang, S.-L.; Zhang, Z.-G. Identification and characterization of an anti-fibrotic benzopyran compound isolated from mangrove-derived Streptomyces xiamenensis. Mar. Drugs 2012, 10, 639–654, doi:10.3390/md10030639.
[24]  Liu, X.-J.; Xu, M.-J.; Fan, S.-T.; Wu, Z.; Li, J.; Yang, X.-M.; Wang, Y.-H.; Xu, J.; Zhang, Z.-G. Xiamenmycin Attenuates Hypertrophic Scars by Suppressing Local Inflammation and the Effects of Mechanical Stress. J. Invest. Dermatol. 2013, 133, 1351–1360, doi:10.1038/jid.2012.486.
[25]  Zhang, X.; Sun, Y.; Bao, J.; He, F.; Xu, X.; Qi, S. Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol. Lett. 2012, 336, 122–130, doi:10.1111/j.1574-6968.2012.02662.x.
[26]  Yin, X.; Zabriskie, T.M. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology 2006, 152, 2969–2983, doi:10.1099/mic.0.29043-0.
[27]  Wu, Y.; Kang, Q.; Shen, Y.; Su, W.; Bai, L. Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS. Mol. Biosyst. 2011, 7, 2459–2469, doi:10.1039/c1mb05036b.
[28]  Marahiel, M.A.; Stachelhaus, T.; Mootz, H.D. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 1997, 97, 2651–2674, doi:10.1021/cr960029e.
[29]  Zhao, W.; Zhong, Y.; Yuan, H.; Wang, J.; Zheng, H.; Wang, Y.; Cen, X.; Xu, F.; Bai, J.; Han, X. Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res. 2010, 20, 1096–1108, doi:10.1038/cr.2010.87.
[30]  Floss, H.G.; Yu, T.-W.; Arakawa, K. The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), the precursor of mC7N units in ansamycin and mitomycin antibiotics: A review. J. Antibiot. (Tokyo) 2010, 64, 35–44.
[31]  Floss, H.G.; Yu, T.W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev. 2005, 105, 621–632, doi:10.1021/cr030112j.
[32]  Gribble, G.W. The diversity of naturally produced organohalogens. Chemosphere 2003, 52, 289–297, doi:10.1016/S0045-6535(03)00207-8.
[33]  Gribble, G.W. Naturally occurring organohalogen compounds—a comprehensive survey. Fortschr. Chem. Org. Naturst. 1996, 68, 1–423, doi:10.1007/978-3-7091-6887-5_1.
[34]  Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P.S. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794, doi:10.1073/pnas.0407607101.
[35]  Smith, D.R.; Gruschow, S.; Goss, R.J. Scope and potential of halogenases in biosynthetic applications. Curr. Opin. Chem. Biol. 2013, 17, 276–283, doi:10.1016/j.cbpa.2013.01.018.
[36]  Pistorius, D.; Muller, R. Discovery of the rhizopodin biosynthetic gene cluster in Stigmatella aurantiaca Sg a15 by genome mining. Chembiochem 2012, 13, 416–426, doi:10.1002/cbic.201100575.
[37]  Vaillancourt, F.H.; Vosburg, D.A.; Walsh, C.T. Dichlorination and Bromination of a Threonyl-S-Carrier Protein by the Non-heme FeII Halogenase SyrB2. Chembiochem 2006, 7, 748–752, doi:10.1002/cbic.200500480.
[38]  Bayer, K.; Scheuermayer, M.; Fieseler, L.; Hentschel, U. Genomic mining for novel FADH2-dependent halogenases in marine sponge-associated microbial consortia. Mar. Biotechnol. 2013, 15, 63–72, doi:10.1007/s10126-012-9455-2.
[39]  Murphy, C.D. Recent developments in enzymatic chlorination. Nat. Prod. Rep. 2006, 23, 147–152, doi:10.1039/b516588c.
[40]  Ayuso-Sacido, A.; Genilloud, O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 2005, 49, 10–24, doi:10.1007/s00248-004-0249-6.
[41]  Schirmer, A.; Gadkari, R.; Reeves, C.D.; Ibrahim, F.; DeLong, E.F.; Hutchinson, C.R. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 2005, 71, 4840–4849, doi:10.1128/AEM.71.8.4840-4849.2005.
[42]  Mets?-Ketel?, M.; Salo, V.; Halo, L.; Hautala, A.; Hakala, J.; M?nts?l?, P.; Ylihonko, K. An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol. Lett. 1999, 180, 1–6.
[43]  Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; John Innes Foundation Norwich: Norwich, UK, 2000; p. 412.
[44]  Ishikawa, J.; Hotta, K. FramePlot: A new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol. Lett. 1999, 174, 251–253, doi:10.1111/j.1574-6968.1999.tb13576.x.
[45]  Yadav, G.; Gokhale, R.S.; Mohanty, D. SEARCHPKS: A program for detection and analysis of polyketide synthase domains. Nucleic Acids Res. 2003, 31, 3654–3658, doi:10.1093/nar/gkg607.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133