Economic exploitation of lunar resources may be more efficient with a non-rocket approach to launch from the lunar surface. The launch system cost will depend on its design, and on the number of launches from Earth to deliver the system to the Moon. Both of these will depend on the launcher system mass. Properties of an electromagnetic resource launcher are derived from two mature terrestrial electromagnetic launchers. A mass model is derived and used to estimate launch costs for a developmental launch vehicle. A rough manufacturing cost for the system is suggested.
References
[1]
O’Neill, G.K. The colonization of space. Physics Today 1974, 27, 33–40.
[2]
Schroeder, J.M.; Gully, J.H.; Driga, M.D. Electromagnetic launchers for space applications. IEEE Trans. Magnetics 1989, 25, 504–507, doi:10.1109/20.22590.
[3]
McNab, I.R. Launch to space with an electromagnetic railgun. IEEE Trans. Magnetics 2003, 39, 295–304, doi:10.1109/TMAG.2002.805923.
[4]
Powell, J.; Maise, G.; Rather, J. Maglev launch: Ultra low cost ultra/high volume access to space for cargo and humans. In Proceedings of the Space, Propulsion, and Energy Sciences International Forum SPESIF-2010; Johns Hopkins University Applied Physics Laboratory: Laurel, MD, USA, 2010. Available online: http://www.scribd.com/doc/88949962/Start-Ram-2010 (accessed on 9 May 2013).
[5]
Snow, W.R.; Kolm, H.H. Electromagnetic launch of lunar material. NASA SP-509, 1992, Volume 2. Energy, Power and Transport, p. 117. Available online: http://www.nss.org/settlement/nasa/spaceresvol2/electromag.html (accessed on 9 May 2013).
[6]
Wright, M.R.; Kuznetsov, S.B.; Kloesel, K.J. A lunar electromagnetic launch system for in-situ resource utilization. In Proceedings of the 15th International Symposium on Electromagnetic Launch Technology, Brussels, Belgium; 2010. Available online: http://ntrs.nasa.gov/search.jsp?R=20110007073 (accessed on 9 May 2013).
[7]
The lunar gas gun mass driver. Space Settlements: A Design Study, NASA SP-413; NASA: Washington, DC, USA, 1975. Available online: http://settlement.arc.nasa.gov/75SummerStudy/4appendK.html (accessed on 10 May 2013).
Turman, B.N.; Kaye, R.J.; Crawford, M.; Magnotti, P.; Nguyen, D.; van Reuth, E.; Johnson, S.A.; Poppe, R. EM Mortar Technology Development for Indirect Fire; Sandia National Laboratories: Albuquerque, NM, USA, 2008. Available online: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA481646 (accessed on 9 May 2013).
[10]
Kaye, R.J.; Turman, B.; Aubuchon, M.; Lamppa, D.; Mann, G.; van Reuth, E.; Fulton, K.; Malejko, G.; Magnotti, P.; Nguyen, D.; Borgwarth, D.; Johnson, A.; Poppe, R. Induction coilgun for EM mortar. In Proceedings of the 16th IEEE Intl. Pulsed Power Conference, Albuquerque, NM, USA, 2007.
[11]
Space Exploration Corporation. Falcon Heavy. Available online: http://www.spacex.com/falcon_heavy.php (accessed on 12 May 2013).
[12]
SaturnV News Reference. December 1968. Available online: http://history.msfc.nasa.gov/saturn_apollo/documents/Saturn_V.pdf (accessed on 12 May 2013).
[13]
Available online: http://asistm.duit.uwa.edu.au/synchrotron/downloads/pdfs/chapter02_2.pdf (accessed on 12 May 2013).