Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions.
References
[1]
Litchfield, C.D. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorites Planet Sci.?1998, 33, 813–819, doi:10.1111/j.1945-5100.1998.tb01688.x.
[2]
Baxter, B.K.; Litchfield, C.D.; Sowers, K.; Griffith, J.D.; DasSarma, P.A.; DasSarma, S. Microbial Diversity of Great Salt Lake. In Adaptation to Life in High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitas, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 9, pp. 9–25.
[3]
Brock, T.D.; Madigan, M.T.; Martinko, J.M. Biology of Microorganisms, 7th ed. ed.; Benjamin Cummings: San Francisco, CA, USA, 1994; p. 909.
Oren, A. Halophilic Microorganisms and Their Environments; Kluwer Academic: Dordrecht, The Netherlands, 2003; p. 575.
[6]
Ruinen, J.; Raas Becking, L.G.M. Rhizopods living in unusual environments. Arch. Néerl Zool.?1938, 3, 183–198.
[7]
Volcani, B.E. The Microorganisms of the Dead Sea. In Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann; Daniel Sieff Research Institute: Rehovoth, Israel, 1944; pp. 71–85.
[8]
Namyslowski, B. Adaptation of zooflagellates to higher salinity. Biol. Vnutr. Vod. Inform Bull.?1913, 61, 21–24.
[9]
Kirby, H. Two protozoa from brine. Trans. Am. Microsc. Soc.?1932, 51, 8–15, doi:10.2307/3222045.
[10]
Ruinen, J. Notizen über Salzflagellaten. II über die Verbereitung der Salzflagellaten. Arch. Protistenkd.?1938, 90, 210–258.
[11]
Patterson, D.J. ; Simpson, A.G. Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol.?1996, 32, 423–448, doi:10.1016/S0932-4739(96)80003-4.
[12]
Post, F.J.; Borowitzka, L.J.; Borowitzka, M.A.; Mackay, B.; Moulton, T. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia?1983, 105, 95–113, doi:10.1007/BF00025180.
[13]
Hauer, G.; Rogerson, A. Heterotrophic Protozoa from Hypersaline Environments. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenita?, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 519–540.
[14]
Por, F. A classification of hypersaline waters, based on trophic criteria. Mar. Ecol.?1980, 1, 121–131, doi:10.1111/j.1439-0485.1980.tb00214.x.
[15]
Ramos-Cormenzana, A. Halophilic Organisms and Their Environment. In General and Applied Aspects of Halophilic Microorganisms; Rodriguez-Valera, F., Ed.; Plenum Press: New York, NY, USA, 1991; pp. 15–24.
[16]
Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Indust. Microbiol. Biotechnol.?2002, 28, 56–63.
[17]
Pedros-Alió, C.; Calderón-Paz, J.I.; MacLean, M.H.; Medina, G.; Marrasé, C.; Gasol, J.M.; Guixa-Boixereu, N. The microbial food web along salinity gradients. FEMS Microbiol. Ecol.?2000, 32, 143–155.
[18]
Elloumi, J.; Carrias, J.-F.; Ayadi, H.; Sime-Ngando, T.; Boukhris, M.; Bouain, A. Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar. Coast. Shelf Sci.?2006, 67, 21–29, doi:10.1016/j.ecss.2005.10.011.
McLachlan, J. The culture of Dunaliella tertiolecta Butcher—A euryhaline organism. Can. J. Microbiol.?1960, 6, 367–379, doi:10.1139/m60-041.
[21]
Al-Qassab, S.; Lee, W.J.; Muray, S.; Simpson, A.G.B.; Patterson, D.J. Flagellates from stramatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool.?2002, 41, 91–144.
[22]
Park, J.S.; Simpson, A.G.B. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in hetertrophic stramenopiles. Environ. Microbiol.?2010, 12, 1173–1184, doi:10.1111/j.1462-2920.2010.02158.x.
[23]
Park, J.S. Effects of different ion compositions on growth of obligately halophillic protozoan Halocafeteria seosinensis. Extremophiles?2012, 16, 161–164, doi:10.1007/s00792-011-0416-x.
[24]
Fenchel, T. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser.?1982, 9, 35–42, doi:10.3354/meps009035.
[25]
Alexander, E.; Stock, A.; Breiner, H.W.; Behnke, A.; Bunge, J.; Yakimov, M.M.; Stoeck, T. Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin. Environ. Microbiol.?2009, 11, 360–381, doi:10.1111/j.1462-2920.2008.01777.x.
[26]
Ayadi, H.; Toumi, N.; Abid, O.; Medhioub, K.; Hammami, M.; Sime-Ngando, T.; Amblard, C.; Sargos, D. Qualitative and quantitative study of phyto- and zooplankton communities in the saline ponds of Sfax, Tunisia. Revue Des. Sci. L’Eau?2002, 15, 123–135.
[27]
Laybourn-Parry, J.; Quayle, W.; Henshaw, T. The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar. Biol.?2002, 25, 542–552, doi:10.1007/s00300-002-0383-x.
Cho, B.C.; Park, J.S.; Xu, K.; Choi, J.K. Morphology and molecular phylogeny of Trimyema koreanum n. sp., a ciliate from the hypersaline water of a solar saltern. J. Eukaryot. Microbiol.?2008, 55, 417–426, doi:10.1111/j.1550-7408.2008.00340.x.
[30]
Park, J.S.; Cho, B.C.; Simpson, A.G.B. Halocafeteria seoinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles?, 10, 493–504, doi:10.1007/s00792-006-0001-x.
[31]
Park, J.S.; Simpson, A.G.B.; Brown, S.; Cho, B.C. Ultrastructure and molecular phylogeny of two heterolobosean amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. Protist?2009, 160, 265–283, doi:10.1016/j.protis.2008.10.002.
[32]
Park, J.S.; Simpson, A.G.B.; Lee, W.J.; Cho, B.C. Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist?2007, 158, 397–413, doi:10.1016/j.protis.2007.03.004.
[33]
Edgcomb, V.P.; Orsi, W.; Breiner, H.-W.; Stock, A.; Filker, S.; Yakimov, M.M.; Stoeck, T. Novel kinetoplastids associated with hypersaline anoxic lakes in the Eastern Mediterranean deep-sea. Deep Sea Res.?2011b, 58, 1040–1048, doi:10.1016/j.dsr.2011.07.003.
[34]
Edgcomb, V.P.; Orsi, W.; Taylor, G.T.; Vdacny, P.; Taylor, C.; Suarez, P.; Epstein, S. Accessing marine protists from the anoxic Cariaco Basin. ISME J.?2011, 5, 1237–1241, doi:10.1038/ismej.2011.10.
[35]
Jahnert, R.L.; Collins, L.B. Significance of subtidal microbial deposits in Shark Bay, Australia. Mar. Geol.?2011, 286, 106–111, doi:10.1016/j.margeo.2011.05.006.
[36]
Dupraz, C.; Visscher, P.T. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol.?2005, 13, 429–438, doi:10.1016/j.tim.2005.07.008.
[37]
Allwood, A.C.; Walter, M.R.; Kamber, B.S.; Marshall, C.P.; Burch, I.W. Stromatolite reef from the Early Archaean era of Australia. Nature?2006, 441, 714–718, doi:10.1038/nature04764.
[38]
Grotzinger, J.P.; Knoll, A.H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Ann. Rev. Earth Planet Sci.?1999, 27, 313–358, doi:10.1146/annurev.earth.27.1.313.
[39]
Tong, S.M. Heterotrophic flagellates from the water column in Shark Bay, Western Australia. Mar. Biol.?1997, 128, 517–536, doi:10.1007/s002270050118.
[40]
Papineau, D.; Walker, J.J.; Mojzsis, S.J.; Pace, N.R. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol.?2005, 71, 4822–4832, doi:10.1128/AEM.71.8.4822-4832.2005.
[41]
Bernhard, J.M.; Edgcomb, V.P.; Visscher, P.T.; McIntyre-Wressnig, A.; Summons, R.E.; Bouxsein, M.; Louis, L.; Jeglinski, M. Microbialites at Highborne Cay, Bahamas: insights on foraminiferal inhabitants and influence on their microfabric. Proc. Natl. Acad. Sci USA?2013. in press.
[42]
Logan, B.W. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J. Geol.?1961, 69, 517–533.
[43]
Stoeck, T.; Bass, D.; Nebel, M.; Christen, R.; Jones, M.D.; Breiner, H.W.; Richards, T.A. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol.?2010, 19, 21–31, doi:10.1111/j.1365-294X.2009.04480.x.
[44]
Pawlowski, J. Introduction to the molecular systematics of foraminifera. Micropaleontology?2000, 46, 1–12.
Nebel, M.E.; Wild, S.; Holzhauser, M.; Reitzig, R.; Sperber, M.; Stoeck, T. Jaguc—A software package for environmental diversity analyses. J. Bioinf. Comp. Biol.?2011, 9, 749–773, doi:10.1142/S0219720011005781.
[47]
Edgcomb, V.; Orsi, W.; Leslin, C.; Epstein, S.S.; Bunge, J.; Jeon, S.; Yakimov, M.M.; Behnke, A.; Stoeck, T. Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles?2009, 13, 151–167, doi:10.1007/s00792-008-0206-2.
[48]
Stock, A.; Breiner, H.-W.; Pachiadaki, M.; Edgcomb, V.; Filker, S.; LaCono, V.; Yakimov, M.M.; Stoeck, T. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles?2011, 16, 21–34.
[49]
Bebout, B.M.; Carpenter, S.P.; Des Marais, D.J.; Discipulo, M.; Embaye, T.; Garcia-Pichel, F.; Hoehler, T.M.; Hogan, M.; Jahnke, L.L.; Keller, R.M.; et al. Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: Simulating earth’s present and past field environments. Astrobiology?2002, 2, 383–402, doi:10.1089/153110702762470491.
[50]
Orsi, W.; Charvet, S.; Bernhard, J.; Edgcomb, V.P. Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns. Front. Ext. Microbiol.?2012, 3, 341.
[51]
Bosak, T.; Lahr, D.J.G.; Pruss, S.B.; Macdonald, F.A.; Gooday, A.J.; Dalton, L.; Matys, E.D. Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates. Geology?2012, 40, 67–70, doi:10.1130/G32535.1.
[52]
Bernhard, J.M.; Visscher, P.T.; Bowser, S.S. Submillimeter life positions of bacteria, protists, and position="float" in laminated sediments of the Santa Barbara Basin. Limnol. Oceanogr.?2003, 48, 813–828, doi:10.4319/lo.2003.48.2.0813.
[53]
Cita, M.B. Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine filled collapsed basins. Sed. Geol?2006, 188–189, 357–378, doi:10.1016/j.sedgeo.2006.03.013.
[54]
Danovaro, R.; Dell'Anno, A.; Pusceddu, A.; Gambi, C.; Heiner, I.; Kristensen, R.M. The first metazoa living in permanently anoxic conditions. BMC Biol.?2010, 8, 30, doi:10.1186/1741-7007-8-30.
Van der Wielen, P.W.; Bolhuis, H.; Borin, S.; Daffonchio, D.; Corselli, C.; Giuliano, L.; D’Auria, G.; de Lange, G.J.; Huebner, A.; Varnavas, S.P.; et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science?2005, 307, 121–123, doi:10.1126/science.1103569.
[57]
Daffonchio, D.; Borin, S.; Brusa, T.; Brusetti, L.; van der Wielen, P.W.; Bolhuis, H.; Yakimov, M.M.; D’Auria, G.; Giuliano, L.; Marty, D.; et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature?2006, 440, 203–207, doi:10.1038/nature04418.
[58]
Hallsworth, J.E.; Yakimov, M.M.; Golyshin, P.N.; Gillion, J.L.; D’Auria, G.; de Lima Alves, F.; La Cono, V.; Genovese, M.; McKew, B.A.; Hayes, S.L.; et al. Limits of life in MgCl2-containing environments: Chaotropicity defines the window. Environ. Microbiol.?2007, 9, 801–813, doi:10.1111/j.1462-2920.2006.01212.x.
[59]
Van der Wielen, P.W.; Heijs, S.K. Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ. Microbiol.?2007, 9, 1335–1340, doi:10.1111/j.1462-2920.2006.01210.x.
[60]
Yakimov, M.M.; Giuliano, L.; Cappello, S.; Denaro, R.; Golyshin, P.N. Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (eastern Mediterranean). Orig. Life Evol. Biosph.?2007, 37, 177–188, doi:10.1007/s11084-006-9021-x.
[61]
Bernhard, J.M.; Buck, K.R.; Farmer, M.A.; Bowser, S.S. The Santa Barbara Basin is a symbiosis oasis. Nature?2000, 403, 77–80, doi:10.1038/47476.
[62]
Taylor, G.T.; Scranton, M.L.; Iabichella, M.; Ho, T.-Y.; Thunell, R.C.; Muller-Karger, F.; Varela, R. Chemoautotrophy in the redox transition zone of the Cariaco Basin: A significant midwater source of organic carbon production. Limnol. Oceanogr.?2001, 46, 148–163, doi:10.4319/lo.2001.46.1.0148.
[63]
Edgcomb, V.; Orsi, W.; Bunge, J.; Jeon, S.O.; Christen, R.; Leslin, C.; Holder, M.; Taylor, G.T.; Suarez, P.; Varela, R.; et al. Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs. Sanger insights into species richness. ISME J.?2011, 5, 1344–1356, doi:10.1038/ismej.2011.6.
[64]
Countway, P.D.; Gast, R.J.; Dennett, M.R.; Savai, P.; Rose, J.M.; Caron, D.A. Distinct protistan assemblages characterize the euphotic zone and deep sea (2,500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol.?2007, 9, 1219–1232, doi:10.1111/j.1462-2920.2007.01243.x.
[65]
Massana, R.; Castresana, J.; Balagué, V.; Guillou, L.; Romari, K.; Groisillier, A.; Valentin, K.; Pedrós-Alió, C. Phylogenetic and ecological analysis of novel marine stramenopiles. Appl. Environ. Microbiol.?2004, 70, 3528–3534, doi:10.1128/AEM.70.6.3528-3534.2004.
[66]
Not, F.; Gausling, R.; Azam, F.; Heidelberg, J.F.; Worden, A.Z. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ. Microbiol.?2007, 9, 1233–1252, doi:10.1111/j.1462-2920.2007.01247.x.