The idea of an autotrophic organism as the first living being on Earth leads to the hypothesis of a protometabolic, complex chemical system. In one of the main hypotheses, the first metabolic systems emerged from the interaction between sulfide minerals and/or soluble iron-sulfide complexes and fluids rich in inorganic precursors, which are reduced and derived from crustal or mantle activity. Within this context, the possible catalytic role of pyrrhotite, one of the most abundant sulfide minerals, in biomimetic redox and carbon fixation reactions was studied. Our results showed that pyrrhotite, under simulated hydrothermal conditions, could catalyze the pyruvate synthesis from lactate and that a dynamic system formed by coupling iron metal and iron-sulfur species in an electrochemical cell could promote carbon fixation from thioacetate esters.
References
[1]
Marine Hydrothermal Systems and The Origin of Life; Holm, N.G., Ed.; Springer: Berlin, Germany, 1992; pp. 1–242.
[2]
Harvey, R.B. Enzymes of thermal algae. Science?1924, 50, 481–482.
[3]
Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol.?2008, 6, 805–814. 18820700
[4]
Cody, G.D.; Boctor, N.Z.; Brandes, J.A.; Filley, T.R.; Hazen, R.M.; Yoder, H.S. Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim. Cosmochim. Acta?2004, 68, 2185–2196, doi:10.1016/j.gca.2003.11.020.
[5]
W?chtersh?user, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev.?1988, 52, 452–484. 3070320
[6]
Huber, C.; W?chtersh?user, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science?1997, 276, 245–247, doi:10.1126/science.276.5310.245.
[7]
Russell, M.J.; Hall, A.J.; Turner, D. In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova?1989, 1, 238–241, doi:10.1111/j.1365-3121.1989.tb00364.x.
[8]
Russell, M.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London?1997, 154, 377–402, doi:10.1144/gsjgs.154.3.0377.
[9]
Martin, W.; Russell, M.J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. T. Roy. Soc.?2007, 362, 1887–1925, doi:10.1098/rstb.2006.1881.
[10]
Fuchs, G. Alternative Pathways of Carbon Dioxide Fixation: Insights into the Early Evolution of Life? Ann. Rev. Microbiol.?2011, 65, 631–658, doi:10.1146/annurev-micro-090110-102801.
[11]
Eck, R.V.; Dayhoff, M.O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science?1966, 152, 363–366, doi:10.1126/science.152.3720.363. 17775169
[12]
Beinert, H. Iron-sulfur proteins: ancient structures, still full of surprises. J. Boil. Inorg. Chem.?2000, 5, 2–15, doi:10.1007/s007750050002.
[13]
Russell, M.J.; Martin, W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci.?2004, 29, 358–363, doi:10.1016/j.tibs.2004.05.007. 15236743
[14]
Holm, R.H. Electron Transfer: Iron–Sulfur Clusters. In Comprehensive Coordination Chemistry II; McCleverty, J.A., Meyer, T.J., Eds.; Pergamon: Oxford, UK, 2003; pp. 61–90.
[15]
Russell, M.J.; Hall, A.J. The onset and early evolution of life. In Evolution of Early Earth’s Atmosphere, Hydrosphere and Biosphere-Constraints from Ore Deposits; Kesler, S.E., Ohmoto, H., Eds.; Geological Society of America: Boulder, CO, USA, 2006; pp. 1–32.
[16]
Wang, W.; Yang, B.; Qu, Y.; Liu, X.; Su, W. FeS/S/FeS2 redox system and its oxido reductase-like chemistry in the iron-sulfur world. Astrobiology?2011, 5, 471–476, doi:10.1089/ast.2011.0624.
[17]
Furdui, C.; Ragsdale, S.W. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J. Biol. Chem.?2000, 275, 28494–28499, doi:10.1074/jbc.M003291200.
[18]
Ragsdale, S.W.; Pierce, E. Acetogenesis and the Wood-Ljundahl pathway to CO2 fixation. Biochim. Biophys. Acta?2008, 1784, 18973–18980.
[19]
De Duve, C. Blueprint for a Cell: The Nature and Origin of Life; Neil Patterson Publishers: Burlington, NC, USA, 1991.
[20]
Cody, G.D. Transition metal sulfides and the origins of metabolism. Ann. Rev. Earth Planet. Sci.?2004, 32, 569–599, doi:10.1146/annurev.earth.32.101802.120225.
[21]
W?chtersh?user, G. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA?1990, 87, 200–204, doi:10.1073/pnas.87.1.200.
[22]
For a detailed overview of the Gualba deposit(In Spanish). Available online: http://www.foro-minerales.com/forum/viewtopic.php?p=82307&highlight=gualba#82307 (accessed on 3 June 2013).
[23]
Hazen, M.R.; Deamer, W.D. Hydrothermal Reactions of Pyruvic acid: Synthesis, Selection, and Self-Assembly of Amphiphilic Molecules. Origins Life Evol. B?2007, 37, 143–152, doi:10.1007/s11084-006-9027-4.
[24]
Cooper, G.; Reed, C.; Nguyen, D.; Carter, M.; Wang, Y. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Porc. Natl. Acad. Sci. USA?2011, 108, 14015–14020, doi:10.1073/pnas.1105715108.
[25]
Schoonen, M.A.A.; Xu, Y.; Bebie, J. Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant. Origins Life Evol. B?1999, 29, 5–32, doi:10.1023/A:1006558802113.
Rickard, D.; Luther, G.W. Chemistry of Iron Sulfides. Chem. Rev.?2007, 107, 514–562, doi:10.1021/cr0503658.
[28]
Bonomi, F.; Werth, M.T.; Kurtz, D.M. Assembly of FenSn(SR)2- (n = 2,4) in aqueous media from iron salts, thiols and sulfur, sulfide, thiosulfide plus rhodonase. Inorg. Chem.?1985, 24, 4331–4335, doi:10.1021/ic00219a026.
[29]
Nakajima, T.; Yabushita, Y.; Tabushi, I. Amino acid synthesis through biogenetic-type CO2 fixation. Nature?1975, 256, 60–61, doi:10.1038/256060a0.
Kung, K.; Mcbride, M.B. Electron Transfer Processes Between hydroquinone and iron oxides. Clay. Clay Miner.?1988, 36, 303–309, doi:10.1346/CCMN.1988.0360403.
[32]
Cody, G.D.; Boctor, N.Z.; Filley, T.R.; Hazen, R.M.; Scott, J.H.; Sharma, A.; Yoder, H.S., Jr. Primordial car- bonylated iron-sulfur compounds and the synthesis of pyruvate. Science?2000, 289, 1337–1340, doi:10.1126/science.289.5483.1337.
Guzman, M.I.; Martin, S.T. Prebiotic metabolism: production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology?2009, 9, 833–842, doi:10.1089/ast.2009.0356.
[35]
Russell, M.J. The alkaline solution to the emergence of life: Energy, entropy and early evolution. Acta biotheor.?2007, 55, 133–179, doi:10.1007/s10441-007-9018-5.
[36]
Mielke, R.E.; Robinson, K.J.; White, L.M.; Mcglynn, S.E.; Mceachern, K.; Bhartia, R.; Kanik, I.; Russell, M.J. Iron-Sulfide-Bearing Chimneys as Potential Catalytic Energy Traps at Life’s Emergence. Astrobiology?2011, 11, 933–950, doi:10.1089/ast.2011.0667.
Nakada, H.I.; Weinhouse, S. Non-enzymatic transamination with glyoxylic acid and various amino acids. J. Biol. Chem.?1953, 204, 831–836. 13117860
[39]
White, R.H. A simple synthesis of (RS)-[2–2H] glycine by the reductive amination of glyoxylic acid. J. Labelled Compd. Rad.?1983, 20, 787–790, doi:10.1002/jlcr.2580200702.
[40]
Guzman, M.I.; Martin, S.T. Photo-production of lactate from glyoxylate: how minerals can facilitate energy storage in a prebiotic world. Chem. Commun.?2010, 46, 2265–2267, doi:10.1039/b924179e.