Experiments will be presented and reviewed to support the hypothesis that the intrinsic reactivity of formaldehyde may lead to the formation of a rather comprehensive set of defined biomolecules, including D-glucose, thus fostering concepts of evolution considering the existence of a premetabolic system as a primordial step in the generation of life.
References
[1]
Saladino, R.; Botta, G.; Pino, S.; Costanzo, G.; di Mauro, E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev.?2012, 41, 5526–5565, doi:10.1039/c2cs35066a.
[2]
Mizuno, T.; Weiss, A.H. Synthesis and utilization of formose sugars. Adv. Carbohydr. Chem. Biochem.?1974, 29, 173–227, doi:10.1016/S0065-2318(08)60250-4.
[3]
Socha, R.F.; Weiss, A.H.; Sakharov, M.M. Homogeneously catalyzed condensation of formaldehyde to carbohydrates: VII. An overall formose reaction model. J. Catal.?1981, 67, 207–217, doi:10.1016/0021-9517(81)90272-4.
[4]
Miller, S.L. A production of amino acids under possible primitive earth conditions. Science?1953, 117, 528–529, doi:10.1126/science.117.3046.528. 13056598
[5]
Miller, S.L.; Urey, H.C. Organic compound synthesis on the primitive earth. Science?1959, 130, 245–251, doi:10.1126/science.130.3370.245. 13668555
[6]
Miller, S.L.; Urey, H.C. Origin of life. Science?1959, 130, 1622–1624, doi:10.1126/science.130.3389.1622. 17781382
[7]
Bada, J.L. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev.?2013, 42, 2186–2196, doi:10.1039/c3cs35433d.
[8]
Decker, P.; Schweer, H.; Pohlmann, R.; Bioids, X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—Mass spectrometry of n-butoxime trifluoroacetates on OV-225. J. Chromatogr.?1982, 244, 281–291, doi:10.1016/S0021-9673(00)85692-7.
[9]
Oro, J. Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun.?1960, 2, 407–412, doi:10.1016/0006-291X(60)90138-8.
[10]
Ferris, J.P.; Orgel, L.E. An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J. Am. Chem. Soc.?1966, 88, 1074, doi:10.1021/ja00957a050.
[11]
Ferris, J.P.; Kuder, J.E. Chemical evolution. III. Photochemical conversion of enaminonitriles to imidazoles. J. Am. Chem. Soc.?1970, 92, 2527–2533, doi:10.1021/ja00711a051.
[12]
Eschenmoser, A. Chemistry of potentially prebiological natural products. Orig. Life Evol. Biosph.?1994, 24, 389–423, doi:10.1007/BF01582017.
[13]
Larralde, R.; Robertson, M.P.; Miller, S. Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc. Natl. Acad. Sci. USA?1995, 92, 8158–8160, doi:10.1073/pnas.92.18.8158.
[14]
Hollis, J.M.; Lovas, F.J.; Jewell, P.R. Interstellar glycolaldehyde: The first sugar. Astrophys. J.?2000, 540, L107–L110, doi:10.1086/312881.
[15]
Cleaves, H.J. The origin of the biologically coded amino acids. J. Theor. Biol.?2010, 263, 490–498, doi:10.1016/j.jtbi.2009.12.014.
[16]
Cleaves, H.J.; Lazcano, A. The origin of biomolecules. ACS Symp. Ser.?2009, 1025, 17–43, doi:10.1021/bk-2009-1025.ch002.
[17]
Yanagawa, H.; Kobayashi, Y.; Egami, F. Genesis of amino acids in the primeval sea: Formation of amino acids from sugars and ammonia in a modified sea medium. J. Biochem.?1980, 87, 359–362. 7358640
[18]
Noe, C.R.; Knollmüller, M.; Ettmayer, P. Chiral lactols, VIII. A way for the asymmetric induction in the formation of sugars. Liebigs Ann. Chem.?1989, 7, 637–643.
[19]
Müller, D.; Pitsch, S.; Kittaka, A.; Wagner, E.; Wintner, C.E.; Eschenmoser, A. Chemie von α-aminonitrilen. aldomerisierung von glycolaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in Gegenwart von Fromaldehyd) racemischen pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac. Ribose-2,4-diphosphat sind die reaktionshauptprodukte. Helv. Chim. Acta?1990, 73, 1410–1468, doi:10.1002/hlca.19900730526.
[20]
Noe, C.R.; Knollmüller, M.; Ettmayer, P. Chiral Lactols, X. Allose as the main product of glycolaldehyde trimerization. Liebigs Ann. Chem.?1991, 5, 417–424.
[21]
Noe, C.R.; Knollmüller, M.; Ettmayer, P.; Freissmuth, J. Chiral lactols, XII. Studies on the aldolizaton of glycolaldehyde catalyzed by bases. Liebigs Ann. Chem.?1994, 6, 611–613.
[22]
Richter, P. Diastereoselektivit?t und Asymmetrische Induktion der Monosaccharidbildung aus 2-Hydroxyethanalderivaten; Shaker Verlag: Aachen, Germany, 1997.
Eschenmoser, A. Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur. Angew. Chem.?1988, 100, 5–40, doi:10.1002/ange.19881000106.
[25]
Eschenmoser, A. Etiology of potentially primordial biomolecular structures: From Vitamin B12 to the nucleic acids and an inquiry into the chemistry of life’s origin: A retrospective. Angew. Chem. Int. Ed. Engl.?2011, 50, 12412–12472, doi:10.1002/anie.201103672.
[26]
Noe, C.R. Chirale Lactole, I. Die 2,3,3a,4,5,6,7,7a-Octahydro-7,8,8,-trimethyl-4,5,-methanobenzofuran-2-yl Schutzgruppe. Chem. Ber.?1982, 115, 1576–1590, doi:10.1002/cber.19821150433.
[27]
Noe, C.R. Chirale Lactole, II. Racematspaltung und enantioselektive Acetalisierung mit der 2,3,3a,4,5,6,7,7a-Octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl Schutzgruppe. Chem. Ber.?1982, 115, 1591–1606, doi:10.1002/cber.19821150434.
[28]
Noe, C.R.; Knollmüller, M.; Wagner, E.; V?llenkle, H. Chirale lactole, IV. Selektivit?ten bei acetalisierungsreaktionen enantiomerenreiner lactole am beispiel von octahydro-7,8,8-trimethyl-5,8-methano-2H-1-benzopyran-2-ol. Chem. Ber.?1985, 118, 1733–1745, doi:10.1002/cber.19851180502.
[29]
Noe, C.R.; Knollmüller, M.; Steinbauer, G.; Jangg, E.; V?llenkle, H. Chirale Lactole, VII. O,O- und O,N-Acetalbildungsreaktionen der enantiomerenreinen exo-anellierten Octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl Schutzgruppe. Chem. Ber.?1988, 121, 1231–1239, doi:10.1002/cber.19881210705.
[30]
Noe, C.R.; Knollmüller, M.; G?rtner, P.; Mereiter, K.; Steinbauer, G. Chiral Lactols, XIV. Stereoselective fusion of five-membered ring lactols to the bornane ring system. Liebigs Ann.?1996, 6, 1015–1021.
[31]
Noe, C.R. Chirale Lactole, III. Eine enantioslektive alkylierung der mercaptoessigs?ure. Chem. Ber.?1982, 115, 1607–1616, doi:10.1002/cber.19821150435.
[32]
Noe, C.R.; Knollmüller, M.; Steinbauer, G.; V?llenkle, H. Chirale Lactole, V. Synthese von benzoin aus meso-hydrobenzoin. Chem. Ber.?1985, 118, 4453–4458, doi:10.1002/cber.19851181116.
[33]
Noe, C.R.; Knollmüller, M.; Ettmayer, P.; G?rtner, P.; Letschnig, M. The asymmetrical potential oft the glycoside bond. ?sterr. Chem. Z?1990, 91, 36–41.
[34]
Noe, C.R.; Knollmüller, M.; G?stl, G.; G?rtner, P. Aminoalkohole. 1. Mitt.: Ein verfahren zur synthese enantiomerenreiner 1,2-aminoalkohole mit erythro-konfiguration. Monatsh. Chem.?1991, 122, 283–290, doi:10.1007/BF00810829.
[35]
Noe, C.R.; Knollmüller, M.; Kürner, H.; Steinbauer, G.; Koberg, H.; G?rtner, P. Pheromone I, (+)-cis-disparlure: Synthese und feldtests. Monatsh. Chem.?1991, 122, 101–110, doi:10.1007/BF00815171.
[36]
Noe, C.R.; Knollmüller, M.; Dungler, K.; Miculka, C.; G?rtner, P. Ein verfahren zur synthese enantiomerenreiner alkanole durch reduktive entschwefelung aus thiophenalkoholen. Monatsh. Chem.?1991, 122, 705–718, doi:10.1007/BF00811470.
[37]
M?urer, M.; Stegmann, H.B. Chiral Recognition of diastereomeric esters and acetals by EPR and NMR investigations. Chem. Ber.?1990, 123, 1679B–1685B, doi:10.1002/cber.19901230817.
[38]
Kirby, A.J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer: Berlin, Germany, 1983.
[39]
Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry, Organic Chemistry Series; Baldwin, J.F., Ed.; Pergamon Press: Oxford, UK, 1983.
[40]
Thibaudeau, C.; Acharya, P.; Chattopadhyaya, J. Stereoelectronic Effects in Nucleosides and Nucleotides and Their Structural Implications, 2nd ed. ed.; Uppsala University Press: Uppsala, Sweden, 2005.
[41]
Knollmüller, M.; Noe, C.R.; Oberhauser, B. Die acetalgruppe, 1. Mitt. acetale von halogenmethyl-arylcarbinolen. Monatsh. Chem.?1986, 117, 407–419, doi:10.1007/BF00816535.
[42]
Knollmüller, M.; Noe, C.R.; Steinbauer, G.; Dungler, K. Enantiomer-selektive acetalbildung, ein verfahren zur reinherstellung bzw. Anreicherung von enantiomeren. Synthesis?1986, 1986, 501–505, doi:10.1055/s-1986-31690.
[43]
Noe, C.R.; Knollmüller, M.; Oberhauser, B.; Steinbauer, G.; Wagner, E. Chirale lactole, VI. Eine methode zur bestimmung der absolutkonfiguration chiraler α-hydroxysubstitierter nitrile, alkine und aldehyde. Chem. Ber.?1986, 119, 729–743, doi:10.1002/cber.19861190230.
[44]
Sch?nauer, K.J.; Walter, P.; Noe, C.R. Absolute configuration of secondary alcohols determined by gas chromatography. Monatsh. Chem.?1986, 117, 127–130, doi:10.1007/BF00809180.
[45]
Noe, C.R.; Knollmüller, M.; Dungler, K.; Miculka, C. Stereoelektronische effekte und chirale erkennung, I. Diastereoselektive etherbildungen aus arylcarbinolen. Chem. Ber.?1994, 127, 359–365, doi:10.1002/cber.19941270213.
Noe, C.R.; Knollmüller, M.; Ziebarth-Schroth, I.; Letschnig, M. Stereoelectronic effects and chiral recognition. II. Kinetic und thermodynamic control in the formation of chiral thioacetals and chiral thioethers. Liebigs Ann.?1996, 1996, 1009–1013.
[48]
Knollmüller, M.; Gaischin, L.; Ferencic, M.; Noe-Letschnig, M.; Girreser, U.; G?rtner, P.; Mereiter, K.; Noe, C.R. Addition von enantiomerenreinen Aminen an aktivierte Olefine, 1. Mitt. über die Addition an w-Nitrostyrol. Monatsh. Chem.?1998, 129, 1025–1033.
[49]
Knollmüller, M.; Ferencic, M.; G?rtner, P.; Girreser, U.; Klinge, M.; Gaischin, L.; Mereiter, K.; Noe, C.R. Addition von enantiomerenreinen Aminen an aktivierte Olefine, 2. Mitt. über die Addition an (E)-4-Oxo-4phenyl-2-butens?ure-ethylester. Monatsh. Chem.?1999, 130, 769–782.
[50]
Koppenhoefer, B.; Schwierskott, M.; Brendle, H.-G.; Noe, C.R.; Jangg, E.; V?llenkle, H. Highly Regioselective Bromination of [3aR-(3aα,4β,7β,7aα]-Hexahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2(3H)-one via Nonclassical Bornyl Cations. J. Org. Chem.?1996, 61, 4476–4479, doi:10.1021/jo960224t.
[51]
Noe, C.R.; Knollmüller, M.; Jangg, E.; Gmeiner, G.P.; Urban, E.; Eppacher, S. Increasing chiral recognition in acetal formation. Chirality?2009, 21, 428–435, doi:10.1002/chir.20609.
Noe, C.R.; Knollmüller, M.; G?stl, G.; Oberhauser, B.; V?llenkle, H. Stereoelectronic Effects and Chiral Recognition: A Natural System of Relationships between Chiral Compounds based on Selectivities in the Formation of Acetals. Angew. Chem. Int. Ed. Engl.?1987, 26, 442–444, doi:10.1002/anie.198704421.
[54]
Noe, C.R.; Knollmüller, M.; Wagner, E.; V?llenkle, H. Kohlenhydrat-Modelle, I. Kinetische und thermodynamische Effekte bei Acetalisierungsreaktionen enantiomerenreiner Thiolactole. Chem. Ber.?1985, 118, 3299–3310, doi:10.1002/cber.19851180829.
[55]
Dungler, K. Synthese und Reaktionen Enantiomerenreiner Thiolactole. MS.c. Thesis, University of Technology Vienna, Vienna, Austria, 1984.
[56]
Ziebart-Schroth, I. Kinetische und Thermodynamische Effekte bei der Bildung Chiraler Thioacetale und Thioether. MS.c. Thesis, University of Technology Vienna, Vienna, Austria, 1990.
[57]
Freissmuth, J. Zucker aus Glykolaldehyd-Synthese und Enantiomeranalytik. Ph.D. Thesis, University of Technology Vienna, Vienna, Austria, 1995.
Noe, C.R.; Freissmuth, J. Capillary zone electrophoresis of aldose enantiomers: Separation after derivatization with S-(?)-1-phenylethylamine. J. Chromat. A?1995, 704, 503–512, doi:10.1016/0021-9673(95)00237-H.
Weber, A.L.; Pizzarello, S. The peptide-catalyzed stereospecific synthesis of tetroses: A possible model for prebiotic molecular evolution. Proc. Natl. Acad. Sci. USA?2006, 103, 12713–12717, doi:10.1073/pnas.0602320103.
[63]
Pizzarello, S.; Weber, A.L. Stereoselective syntheses of pentose sugars under realistic prebiotic conditions. Orig. Life Evol. Biosph.?2010, 40, 3–10, doi:10.1007/s11084-009-9178-1.
[64]
Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature?2009, 459, 239–242, doi:10.1038/nature08013.
[65]
Benner, S.A.; Kim, H.-J.; Carrigan, M.A. Asphalt, water and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res.?2012, 45, 2025–2034, doi:10.1021/ar200332w.
[66]
Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron?2007, 63, 12821–12844, doi:10.1016/j.tet.2007.10.012.
[67]
Pitsch, S.; Wendeborn, S.; Juan, B.; Eschenmoser, A. Why pentose- and not hexose-nucleic acids? Part VII. Pyranosyl-RNA (“p-RNA”). Preliminary communication. Helv. Chim. Acta?1993, 76, 2161–2183, doi:10.1002/hlca.19930760602.
Drenkard, S.; Ferris, J.; Eschenmoser, A. Chemie von α-aminonitrilen. aziridin-2-carbonitril, ein vorl?ufer von rca-O3Phosphoserinnitril und glycolaldehyd-phosphat. Helv. Chim. Acta?1990, 73, 1373–1390, doi:10.1002/hlca.19900730524. 11538475
[70]
Eschenmoser, A. Searching for nucleic acid alternatives. In Chemical Synthetic Biology; Luisi, P.L., Chiarabelli, C., Eds.; John Wiley & Sons: Chichester, UK, 2011; pp. 4–47.
[71]
Powner, M.W.; Zheng, S.L.; Szostak, J.W. Multicomponent assembly of proposed DNA precursors in water. J. Am. Chem. Soc.?2012, 134, 13889–13895, doi:10.1021/ja306176n.
[72]
Majumdar, L.; Das, A.; Chakrabarti, S.K.; Chakrabarti, S. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds. Res. Astron. Astrophys.?2012, 12, 1613–1624, doi:10.1088/1674-4527/12/12/003.
[73]
Noe, C.R.; Knollmüller, M.; G?rtner, P.; Katikarides, E.; Gaischin, L.; V?llenkle, H. Chiral Lactols, XIII. On the determination of the absolute configuration of aromatic cyanohydrins and structurally related compounds. Liebigs Ann.?1995, 1995, 1353–1360, doi:10.1002/jlac.1995199507180.
[74]
Jangg, E. Stereoelektronische Effekte und chirale Erkennung. Ph.D. Thesis, University of Vienna, Vienna, Austria, 1990.
[75]
Girreser, U.; Haberhauer, G.; Noe, C.R. O,O-acetal formation of exo-annelated octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-ol with lactic acid and phenyllactic acid derivates. Monatsh. Chem.?1998, 129, 281–289.
[76]
Letschnig, M. Untersuchungen über den Einfluss stereoelektronischer Effekte auf die Bildung chiraler Acylale und Ester. MS.c. Thesis, University of Technology Vienna, Vienna, Austria, 1987.
Noe, C.R.; Knollmüller, M.; Ettmayer, P. Paraformaldehyde as possible chiral amplifier. Angew. Chem. Int. Ed. Engl.?1988, 27, 1379–1380, doi:10.1002/anie.198813791.
[81]
Miculka, C.; Noe, C.R.; Eppacher, S. Chirality transfer in the formation of poly(oxymethylene) helices by anionic polymerization. Helv. Chim. Acta?2012, 95, 845–851, doi:10.1002/hlca.201200032.
[82]
Lambert, J.B.; Lu, G.; Singer, S.R.; Kolb, V.M. Silicate complexes of sugars in aqueous solutions. J. Am. Chem. Soc.?2004, 126, 9611–9625, doi:10.1021/ja031748v.
[83]
Benner, S.A.; Kim, H.J.; Kim, M.J.; Ricardo, A. Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb. Perspect. Biol.?2010, 2, a003467, doi:10.1101/cshperspect.a003467.
[84]
De Spinoza, B. Ethica Ordine Geometrico Demonstrata, 3rd ed.; Bartuschat, W., Ed.; Felix Meiner Verlag: Hamburg, Germany, 2010; p. 70.
[85]
Oparin, A.I. Genesis and Evolutionary Development of Life; Academic Press: New York, NY, USA, 1968; pp. 9–40.
[86]
Perry, R.S.; Kolb, V.M. On the applicability of darwinian principles to chemical evolution that led to life. Int. J. Astrobiol.?2004, 3, 45–53, doi:10.1017/S1473550404001892.
[87]
Kolb, V.M. On the applicability of the principle of the quantity-to-quality transition to chemical evolution that led to life. Int. J. Astrobiol.?2005, 4, 227–232, doi:10.1017/S1473550405002818.