A series of non-proteinogenic amino acids, most of them found quite commonly in the meteorites known as carbonaceous chondrites, were subjected to solid state radiolysis in vacuum to a total radiation dose of 3.2 MGy corresponding to 23% of the total dose expected to be taken by organic molecules buried in asteroids and meteorites since the beginning of the solar system 4.6 × 10 9 years ago. The radiolyzed amino acids were studied by FT-IR spectroscopy, Differential Scanning Calorimetry (DSC) and by polarimety and Optical Rotatory Dispersion (ORD). It is shown that an important fraction of each amino acid is able to “survive” the massive dose of radiation, while the enantiomeric excess is partially preserved. Based on the results obtained, it is concluded that it is unsurprising to find amino acids even in enantiomeric excess in carbonaceous chondrites.
References
[1]
Anders, E. Organic matter in meteorites: Possible origins. Space Sci. Rev.?1991, 56, 157–166, doi:10.1007/BF00178405.
[2]
Sephton, M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep.?2002, 19, 292–311, doi:10.1039/b103775g.
[3]
Cronin, J.R.; Pizzarello, S. Chirality of meteoritic organic matter: A brief review. In Perspective in Amino Acid and Protein Geochemistry; Goodfriend, G.A., Collins, M.J., Fogel, M.L., Macko, S.A., Wehmiller, J.F., Eds.; Oxford University Press: Oxford, UK, 2000. Chapter 2.
[4]
Pizzarello, S.; Cronin, J.R. Non-racemic amino acids in the Murray and Murchison meteorites. Geochim. Cosmochim. Acta?2000, 64, 329–338, doi:10.1016/S0016-7037(99)00280-X.
[5]
Pizzarello, S.; Huang, Y.; Alexandre, M.R. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. Proc. Natl. Acad. Sci. USA?2008, 105, 3700–3704, doi:10.1073/pnas.0709909105. 18310323
[6]
Meierhenrich, U.J. Amino Acids and the Asymmetry of Life; Springer: Berlin, Germany, 2008.
[7]
Martins, Z.; Sephton, M.A. Extraterrestrial amino acids. In Amino Acids, Peptides and Proteins in Organic Chemistry; Hughes, A.W., Ed.; Wiley-VCH: Weinheim, Germany, 2009. Chapter 1.
[8]
Pizzarello, S.; Groy, T.L. Molecular asymmetry in extraterrestrial organic chemistry: An analytical perspective. Geochim. Cosmochim. Acta?2011, 75, 645–656, doi:10.1016/j.gca.2010.10.025.
[9]
Pizzarello, S.; Schrader, D.L.; Monroe, A.A.; Lauretta, D.S. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc. Natl. Acad. Sci. USA?2012, 109, 11949–11954, doi:10.1073/pnas.1204865109. 22778439
Pizzarello, S.; Shock, E. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol.?2010, 2, a00210.
[12]
Schmitt-Kopplin, P.; Gabelic, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA?2010, 107, 2763–2768, doi:10.1073/pnas.0912157107.
[13]
Glavin, D.P.; Callahan, M.P.; Dworkin, J.P.; Elsila, J.E. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci.?2010, 45, 1948–1972, doi:10.1111/j.1945-5100.2010.01132.x.
[14]
Burton, A.S.; Stern, J.C.; Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev.?2012, 41, 5459–5472, doi:10.1039/c2cs35109a.
[15]
Elsila, J.E.; Charnley, S.B.; Burton, A.S.; Glavin, D.P.; Dworkin, J.P. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways. Meteorit. Planet. Sci.?2012, 47, 1517–1536, doi:10.1111/j.1945-5100.2012.01415.x.
[16]
Chan, H.S.; Martins, Z.; Sephton, M.A. Amino acid analyses of type 3 chondrites colony, ornans, chainpur, and bishunpur. Meteorit. Planet. Sci.?2012, 47, 1502–1516, doi:10.1111/j.1945-5100.2012.01413.x.
[17]
Burton, A.S.; Elsila, J.E.; Hein, J.E.; Glavin, D.P.; Dworkin, J.P. Extraterrestrial amino acids identified in metal-rich CH and CB carbonaceous chondrites from Antarctica. Meteorit. Planet. Sci.?2013, 48, 390–402, doi:10.1111/maps.12063.
[18]
Miller, S.L. The endogenous synthesis of organic compounds. In The Molecular Origin of Life: Assembling the Pieces of a Puzzle; Brack, A., Ed.; Cambridge University Press: Cambridge, UK, 2000. Chapter 3.
[19]
Sagan, C.; Khare, B.N. Long wavelength ultraviolet photoproduction of amino acids on the primitive earth. Science?1971, 173, 417–420, doi:10.1126/science.173.3995.417. 17770442
[20]
Takano, Y.; Takahashi, J.; Kaneko, T.; Marumo, K.; Kobayashi, K. Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet. Sci. Lett.?2007, 254, 106–114, doi:10.1016/j.epsl.2006.11.030.
[21]
Bonner, W.A.; Rubenstein, E. Supernovae, neutron stars and biomolecular chirality. BioSystems?1987, 20, 99–111, doi:10.1016/0303-2647(87)90025-6. 3580540
[22]
Jorissen, A.; Cerf, C. Asymmetric photoreactions as the origin of the biomolecular homochirality: A critical review. Orig. Life Evol. Biosph.?2002, 32, 129–142, doi:10.1023/A:1016087202273.
[23]
Meierhenrich, U.J.; Nahon, L.; Alcaraz, C.; Bredehoft, J.H.; Hoffmann, S.V.; Barbier, B.; Brack, A. Asymmetric photolysis of the amino acid leucine in the solid state. Angew. Chem. Int. Ed.?2005, 44, 2–5.
[24]
Kwok, S. Organic matter in space: From star dust to the Solar System. Astrophys. Space Sci.?2009, 319, 5–21, doi:10.1007/s10509-008-9965-6.
[25]
Kwok, S. Organic Matter in the Universe; Wiley: Weinheim, Germany, 2012.
[26]
Urey, H.C. On the early chemical history of the earth and the origin of life. Proc. Natl. Acad. Sci. USA?1952, 38, 351–363, doi:10.1073/pnas.38.4.351.
[27]
Urey, H.C. The cosmic abundances of potassium, uranium and thorium and the heat balance of the earth the moon and mars. Proc. Natl. Acad. Sci. USA?1955, 41, 127–144, doi:10.1073/pnas.41.3.127. 16589631
[28]
Urey, H.C. The cosmic abundances of potassium, uranium and thorium and the heat balance of the earth, the moon and mars. Proc. Natl. Acad. Sci. USA?1956, 42, 889–891, doi:10.1073/pnas.42.12.889.
[29]
Navarro-Gonzalez, R.; Romero, A. On the survivability of an enantiomeric excess of amino acids in comet nuclei during the decay of 26Al and other radionuclides. Astrophys. Space Sci.?1996, 236, 49–60, doi:10.1007/BF00644320.
[30]
Cataldo, F.; Ursini, O.; Angelini, G.; Iglesias-Groth, S.; Manchado, A. Radiolysis and radioracemization of 20 amino acids from the beginning of the Solar System. Rend. Fis. Acc. Lincei?2011, 22, 81–94.
[31]
Kohman, T.P. Aluminium-26 a radionuclide for all seasons. J. Radioanal. Nucl. Chem.?1997, 219, 165–176, doi:10.1007/BF02038496.
[32]
Cataldo, F.; Angelini, G.; Iglesias-Groth, S.; Manchado, A. Solid state radiolysis of amino acids in an astrochemical perspective. Radiat. Phys. Chem.?2010, 80, 57–65.
[33]
Cataldo, F.; Ragni, P.; Iglesias-Groth, S.; Manchado, A. Solid state radiolysis of sulphur-containing amino acids: Cysteine, cystine and methionine. J. Radioanal. Nucl. Chem.?2010, 287, 573–580.
[34]
Cataldo, F.; Ragni, P.; Iglesias-Groth, S.; Manchado, A. A detailed analysis of the properties of radiolyzed proteinaceous amino acids. J. Radioanal. Nucl. Chem.?2010, 287, 903–911.
[35]
Iglesias-Groth, S.; Cataldo, F.; Ursini, O.; Manchado, A. Amino acids in comets and meteorites: Stability under gamma radiation and preservation of the enantiomeric excess. Mon. Not. R. Astron. Soc.?2011, 210, 1447–1453.
[36]
Cataldo, F.; Angelini, G.; Hafez, Y.; Iglesias-Groth, S. Solid state radiolysis of non-proteinaceous amino acids in vacuum: Astrochemical implications. J. Radioanal. Nucl. Chem.?2012, 295, 1235–1243.
[37]
Cataldo, F. Gamma radiolysis of chiral terpenes: A(+)pinene and a(?)pinene. J. Radioanal. Nucl. Chem.?2007, 272, 82–90.
[38]
Cataldo, F. Radiation-induced racemization and amplification of chirality: Implications for comets and meteorites. Int. J. Astrobiol.?2007, 6, 1–10, doi:10.1017/S1473550407003576.
[39]
Cataldo, F.; Angelini, G.; Capitani, D.; Gobbino, M.; Ursini, O.; Forlini, F. Determination of the Chemical Structure of Poly-(?)-pinene by NMR Spectroscopy. J. Macromol. Sci. Pure Appl. Chem.?2008, 45, 839–849, doi:10.1080/10601320802300735.
[40]
Cataldo, F.; Ursini, O.; Angelini, G. Radioracemization and radiation-induced chiral amplification of chiral terpenes measured by optical rotatory dispersion (ORD) spectroscopy. Radiat. Phys. Chem.?2008, 77, 961–967, doi:10.1016/j.radphyschem.2008.03.003.
[41]
Cataldo, F.; Ursini, O.; Angelini, G.; Ragni, P. Radiation-induced inclusion polymerization of (?)pinene in deoxycholic acid. J. Macromol. Sci. Pure Appl. Chem.?2009, 46, 493–502, doi:10.1080/10601320902797723.
[42]
Cataldo, F.; Ursini, O.; Angelini, G. Synthesis and study of the thermal and chiro-optical properties of polyacetylenes with bulky side groups: Poly(1-ethynyl-4-biphenyl), Poly(1-ethynyl-4-phenoxybenzene) and Poly(1-ethynyl-4-pentylbenzene). J. Macromol. Sci. Pure Appl. Chem.?2009, 46, 860–869, doi:10.1080/10601320903078008.
[43]
Cataldo, F.; Ursini, O.; Angelini, G. Asymmetric radiation-induced inclusion polymerization of 3-methyl-1,4-pentadiene in deoxycholic acid. Radiat. Phys. Chem.?2010, 79, 57–63, doi:10.1016/j.radphyschem.2009.08.047.
[44]
Cataldo, F.; Lilla, E.; Ursini, O. Radiation-induced polymerization of B(+)-pinene and synthesis of optically active B(+)/B(?)pinene polymers and copolymers. Radiat. Phys. Chem.?2011, 80, 723–730, doi:10.1016/j.radphyschem.2011.01.005.
[45]
Djerassi, C. Optical Rotatory Dispersion Applications to Organic Chemistry; McGraw-Hill: New York, NY, USA, 1960.
[46]
Freeland, S. Terrestrial amino acids and their evolution. In Amino Acids, Peptides and Proteins in Organic Chemistry; Hughes, A.W., Ed.; Wiley-VCH: Weinheim, Germany, 2009; Volume 1.
[47]
Gargaud, M. Encyclopedia of Astrobiology; Springer: Berlin, Germany, 2011; Volume 1, p. 39.
[48]
Gejvall, T.; Lofroth, G. Radiation induced degradation of some crystalline amino acids. Radiat. Eff.?1975, 25, 187–190, doi:10.1080/00337577508235388.
[49]
Garrison, W.M. The radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods. Radiat. Eff.?1981, 54, 29–40, doi:10.1080/00337578108207124.
[50]
Raffi, J.; Talbi, S.; Dolo, J.M.; Garcia, T.; Kister, J. Advances in solid alanine radiolysis understanding. Spectrochim. Acta Part A?2008, 69, 904–910, doi:10.1016/j.saa.2007.05.040.
[51]
Kushelevsky, A.P.; Slifkin, M.A. The effect of crystal structure on the stability, amino acids and dipeptides yield and shape of ESR spectra of gamma-irradiated. Radiat. Eff.?1972, 15, 175–181, doi:10.1080/00337577208234691.
[52]
Ba?kan, M.H. EPR of γ-irradiated l-glutamine, glycyl-l-glutamine and N-glycyl-l-valine. Radiat. Eff. Defects Solids?2008, 163, 35–39, doi:10.1080/10420150701552667.
[53]
Aydin, M.; Ba?kan, M.H.; Yakar, S.; Ulak, F.S.; Aydinol, M.; Aydinol, B.; Büyüm, M. EPR studies of gamma-irradiated l-alanine ethyl ester hydrochloride, l-arginine and alanyl-l-glutamine. Radiat.Eff. Defects Solids?2008, 163, 41–46, doi:10.1080/10420150701552642.
[54]
Ba?kan, M.H.; Osmanoglu, S.; Diclec, I.Y. Radiation damage produced in powder of α-(methylamino)isobutyric acid, α-aminoisobutyric acid methyl ester hydrochloride and diethylmalonic acid. Radiat. Eff. Defects Solids?2009, 164, 673–678, doi:10.1080/10420150903173296.
[55]
Ba?kan, M.H.; Ayd?n, M.; Osmano?lu, S.; Topkaya, R. Electron paramagnetic resonance characterization of gamma irradiation damage centers in powder of l-(+)-tartaric acid, N-acetyl-l-alanine and 1-methyl-l-histidine. Radiat. Eff. Defects Solids?2010, 165, 938–943, doi:10.1080/10420150903582397.
[56]
Bonner, W.; Lemmon, R.M. Radiolysis, racemization and the origin o molecular asymmetry in the biosphere. J. Mol. Evol.?1978, 11, 95–99, doi:10.1007/BF01733885.
[57]
Bonner, W.; Lemmon, R.M. Radiolysis, racemization, and the origin of optical activity. Bioorg. Chem.?1987, 7, 175–187, doi:10.1016/0045-2068(78)90047-0.
[58]
Bonner, W.A.; Blair, N.E.; Lemmon, R.M. The radioracemization of amino acids by ionizing radiation: Geochemical and cosmochemical implications. Orig. Life Evol. Biosph.?1979, 9, 279–290, doi:10.1007/BF00926821.
[59]
Bonner, W.; Liang, Y. β-Decay, Bremsstrahlen, and the Origin of Molecular Chirality. J. Mol. Evol.?1984, 21, 84–89, doi:10.1007/BF02100632.
[60]
Bonner, W.A. The radiolysis and radioracemization of poly-l-leucines. Radiat. Res.?1999, 152, 83–87, doi:10.2307/3580053.
[61]
Kminek, G.; Bada, J.L. The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett.?2006, 245, 1–5, doi:10.1016/j.epsl.2006.03.008.
[62]
Zscherp, C.; Barth, A. Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanism. Biochemistry?2001, 40, 1875–1883, doi:10.1021/bi002567y.
[63]
Avram, M.; Mateescu, G.D. Infrared Spectroscopy Applications to Organic Chemistry; Wiley-Interscience: New York, NY, USA, 1972; p. 479.
[64]
Colthup, N.B.; Daly, L.H.; Wiberley, S.E. Introduction to Infrared and Raman Spectroscopy, 3rd ed. ed.; Academic Press, Inc.: San Diego, CA, USA, 1990; p. 318.
[65]
Barth, A. The infrared absorption spectra of amino acids side chains. Progr. Biophys. Mol. Biol.?2000, 74, 141–173, doi:10.1016/S0079-6107(00)00021-3.
[66]
Hohne, G.; Hemminger, W.; Flammersheim, H.J. Differential Scanning Calorimetry. An Introduction for Practictioners; Springer-Verlag: Berlin, Germany, 2001; p. 176.
[67]
Marciniec, B.; Kozak, M.; Ogrodowczyk, M. DSC study of radiostability of 1,4-dihydropyridine derivatives. J. Thermal Anal. Calorim.?2004, 77, 581–596, doi:10.1023/B:JTAN.0000038996.14324.34.