Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system.
References
[1]
Miller, S.L.; Cleaves, H.J. Systems Biology: Geomics; Rigoutsos, I., Stephanopoulos, G., Eds.; Oxford Univessity Press: New York, NY, USA, 2007; Volume 1, pp. 3–56.
[2]
Bauer, H. Die ersten organisch-chemischen Synthesen. Naturwissenschaften?1980, 67, 1–6, doi:10.1007/BF00424496.
[3]
Proust, J.L. Contributions on Cyanides. Ann. Chim. Phys.?1806, 60, 233.
[4]
Wipperman, R. Ueber Tricyanwasserstoff, eine der blausaure polymere verbindung. Ber. Deustchen Chem. Ges.?1874, 7, 767–772, doi:10.1002/cber.187400701244.
[5]
Pflüger, E. Beitrag? zur Lehre von der Respiration. I. Ueber die physiologische Verbrennung in den lebendigen organismen. Arch. Ges. Physiol.?1875, 10, 641–644, doi:10.1007/BF01639954.
[6]
Oró, J. Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun.?1960, 2, 407–412, doi:10.1016/0006-291X(60)90138-8.
[7]
Gao, Y.; Solomon, P.M. HCN survey of normal spiral, infrared-luminous and ultraluminous galaxies. Astrophys. J. Suppl. Ser.?2004, 152, 63–80, doi:10.1086/383003.
[8]
Buhl, D. Chemical constituents of interstellar clouds. Nature?1971, 234, 332–334, doi:10.1038/234332a0.
[9]
Boger, G.I.; Sternberg, A. CN and HCN in dense interstellar clouds. Astrophys. J.?2005, 632, 302–315, doi:10.1086/432864.
[10]
Greaves, J.S.; Church, S.E. Photodissociation and the CN: HCN ratio: Observations of a ‘Third Bar’ in OMC1. Mon. Not. R. Astron. Soc.?1996, 283, 1179–1183, doi:10.1093/mnras/283.4.1179.
[11]
Simon, R.; Stutzki, J.; Sternberg, A.; Winnewisser, G. Chemical stratification in the orion bar region: CN and CS submillimeter observations. Astron. Astrophys.?1997, 327, L9–L12.
[12]
Young Owl, R.C.; Meixner, M.M.; Wolfire, M.; Tielens, A.G.G.M.; Tauber, J. HCN and HCO+ images of the orion bar photodissociation region. Astrophys. J.?2000, 540, 886–906, doi:10.1086/309342.
[13]
Savage, C.; Apponi, A.J.; Ziurys, L.M.; Wyckoff, S. Galactic 12C/13C Ratios from millimeter-wave observations of interstellar CN. Astrophys. J.?2002, 578, 211–223, doi:10.1086/342468.
[14]
Schneider, N.; Simon, R.; Kramer, C.; Kraemer, K.; Stutzki, J.; Mookerjea, B. A multiwavelength study of the S 106 region-II. Characteristics of the photon dominated region. Astron. Astrophys.?2003, 406, 915–935, doi:10.1051/0004-6361:20030726.
[15]
Fuente, A.; Martin-Pintado, J.; Cernicharo, J.; Bachiller, R. A chemical study of the photodissociation region NGC 7023. Astron. Astrophys.?1993, 276, 473–488.
[16]
Fuente, A.; Martin-Pintado, J.; Gaume, R. High-density CN filaments in NGC 2023. Astrophys. J.?1995, 442, L33, doi:10.1086/187809.
[17]
Jansen, D.J.; van Dishoeck, E.F.; Black, J.H.; Spaans, M.; Sosin, C. Physical and chemical structure of the IC 63 nebula. II. Chemical models. Astron. Astrophys.?1995, 302, 223–242.
[18]
Fuente, A.; Rodriguez-Franc, A.; Garcia-Burillo, S.; Martin-Pintado, J.; Black, J.H. Observational study of reactive ions and radicals in PDRs. Astron. Astrophys.?2003, 406, 899–913, doi:10.1051/0004-6361:20030712.
[19]
Bachiller, R.; Forveille, T.; Huggins, P.J.; Cox, P. The chemical evolution of planetary nebulae. Astron. Astrophys.?1997, 324, 1123–1134.
Magee-Sauer, K.; Mumma, M.J.; DiSanti, M.A.; Russo, N.J.; Retting, T.W. Infrared spectroscopy of the ν3 band of hydrogen cyanide in Comet C/1995 O1 hale-bopp. Icarus?1999, 142, 498–508, doi:10.1006/icar.1999.6215.
[22]
Wootten, A.; Lichten, S.M.; Sahai, R.; Wannier, P.G. CN abundance variations in the shell of IRC + 10216. Astrophys. J.?1982, 257, 151–160, doi:10.1086/159973.
[23]
Truong-Bach, A.; Nguyen-Q-Rieu, A.; Omont, O.H.; Johansson, L.E.B. The circumstellar shell of IRC + 10216-Photo-chemistry of C2H and CN. Astron. Astrophys.?1987, 176, 285–293.
[24]
Bachiller, R.; Fuente, A.; Bujarrabal, V.; Colomar, F.; Loup, C.; Omont, A.; de Jong, T. A survey of CN in circumstellar envelopes. Astron. Astrophys.?1997, 319, 235–243.
[25]
Lindqvist, M.; Sch?ier, F.L.; Lucas, R.; Olofsson, H. Molecular envelopes around carbon stars Interferometric observations and models of HCN and CN emission. Astron. Astrophys.?2000, 361, 1036–1057.
[26]
Van Zadelhoff, G.-J.; Aikawa, Y.; Hogerheijde, M.R.; van Dishoeck, E.F. Axi-symmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry. Astron. Astrophys.?2003, 397, 789–802, doi:10.1051/0004-6361:20021592.
[27]
Thi, W.-F.; van Zadelhoff, G.-J.; van Dishoeck, E.F. Organic molecules in protoplanetary disks around TTauri and HerbigAe stars. Astron. Astrophys.?2004, 425, 955–972, doi:10.1051/0004-6361:200400026.
Donn, B. Comets: Chemistry and chemical evolution. J. Mol. Evol.?1982, 18, 157–160, doi:10.1007/BF01733041.
[30]
Fray, N.; Bénilan, Y.; Cottin, H.; Gazeau, M.-C.; Crovisier, J. The origin of the CN radical in comets: A review from observations and models. Planet Space Sci.?2005, 53, 1243–1262, doi:10.1016/j.pss.2005.06.005.
[31]
Matthews, C.N. Hydrogen cyanide polymers from the impact of comet P/Shoemaker-Levy 9 on Jupiter. Adv. Space Res.?1997, 19, 1087–1091, doi:10.1016/S0273-1177(97)00357-8.
[32]
Pizzarello, S. Hydrogen cyanide in Murchinson meteorite. Astrophys. J. Lett.?2012, 754, L27, doi:10.1088/2041-8205/754/2/L27.
[33]
Hanel, R.A.; Conrath, B.; Flaser, F.M.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Samuelson, R.; Herath, L.; Allison, M.; et al. Infrared observations of the saturnian system from voyager 1. Science?1981, 212, 192–200, doi:10.1126/science.212.4491.192. 17783829
[34]
Tokunaga, A.T.; Beck, S.C.; Geballe, T.R.; Lacey, J.H.; Serabyn, E. The detection of HCN on Jupiter. Icarus?1981, 48, 283–289, doi:10.1016/0019-1035(81)90109-3.
[35]
Owen, T. The atmosphere of Titan. J. Mol. Evol.?1982, 18, 150–156, doi:10.1007/BF01733040.
[36]
Irvine, W.M. The composition of interstellar molecular clouds. Space Sci. Rev.?1999, 90, 203–218, doi:10.1023/A:1005258300558.
[37]
Hidayat, T.; Marten, A.; Bézard, B.; Gautier, D.; Owen, T.; Matthwes, H.E.; Paubert, G. Millimeter and submillimeter heterodyne observations of Titan: Retrieval of the vertical profile of HCN and the12C/13C ratio. Icarus?1997, 126, 170–182, doi:10.1006/icar.1996.5640.
[38]
Hards, V. Volcanic contributions to the global carbon cycle. Sustainable and renewable energy. Br. Geol. Surv. Occas. Publ.?2005, 10, 16–17.
[39]
Ferris, J. Marine hydrothermal systems and the origin of life: Chemical markers of prebiotic chemistry in hydrothermal systems. Orig. Life Evol. Biosph.?1992, 22, 109–134, doi:10.1007/BF01808020.
[40]
Miller, S.L. The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta?1957, 23, 480–489, doi:10.1016/0006-3002(57)90366-9.
[41]
Greenberg, J.M.; Mendoza-Gomez, C.X.; Pirronello, V. The Chemistry of life’s origins. NATO ASI Ser. Ser. C Math. Phys. Sci.?1993, 416, 259–299.
[42]
Bar Nun, A.; Bar-Nun, N.; Bauer, S.H.; Sagan, C. Shock synthesis of amino acids in simulated primitive environments. Science?1970, 168, 470–473, doi:10.1126/science.168.3930.470. 5436082
[43]
Ferris, J.P.; Chen, C.T. Photosynthesis of organic compounds in the atmosphere of Jupiter. Nature?1975, 258, 587–588, doi:10.1038/258587a0.
[44]
Stribling, R.; Miller, S.L. Electric discharge synthesis of HCN in simulated Jovian Atmospheres. Orig. Life?1987, 17, 261, doi:10.1007/BF02386466.
[45]
Cataldo, F.; Lilla, E.; Ursini, O.; Angelini, G. TGA-FT-IR study of pirólisis of poly(hydrogen cyanide) synthesized from termal decomposition of formamide. Implications in cometary emissions. J. Anal. Appl. Pyrolysis?2010, 87, 34–44, doi:10.1016/j.jaap.2009.10.002.
[46]
Ruiz-Bermejo, M.; de la Fuente, J.L.; Rogero, C.; Menor-Salván, C.; Osuna-Esteba, S.; Martín-Gago, J.A. New insights into the characterization of ‘Insoluble Black HCN polymers’. Chem. Biodiver.?2012, 9, 25–40, doi:10.1002/cbdv.201100036.
[47]
Mamajanov, I.; Herzfeld, J. HCN polymers characterized by SSNMR: Solid state reaction of crystalline tetramer (diaminomaleonitrile). J. Chem. Phys.?2009, 130, 134504, doi:10.1063/1.3092909.
[48]
Mamajanov, I.; Herzfeld, J. HCN polymers characterized by solid state NMR: Chains and sheets formed in the neat liquid. J. Chem. Phys.?2009, 130, 134503, doi:10.1063/1.3092908.
[49]
Umemoto, K.; Takahashi, M.; Yokota, K. Studies on structure of HCN oligomers. Orig. Life?1987, 17, 283–293, doi:10.1007/BF02386468.
[50]
Ferris, J.P.; Edelson, E.H.; Auyeung, J.M.; Joshi, P.C. Structural studies on HCN oligomers. J. Mol. Evol.?1981, 17, 69–77, doi:10.1007/BF01732676.
[51]
Matthews, C.N.; Moser, R.E. Peptide synthesis from hydrogen cyanide and water. Nature?1967, 215, 1230–1234, doi:10.1038/2151230a0.
[52]
V?lker, T. Polymere blaus?ure. Angew. Chem.?1960, 72, 379–384, doi:10.1002/ange.19600721104.
[53]
Pernot, P.; Carrasco, N.; Thissen, R.; Schmitz-Afonso, I. Tholinomics-chemical analysis of nitrogen-rich polymers. Anal. Chem.?2010, 82, 1371–1380, doi:10.1021/ac902458q.
[54]
Vuitton, V.; Bonnet, J.Y.; Frisari, M.; Thissen, R.; Quirico, E.; Dutuit, O.; Schmitt, B.; Le Roy, L.; Fray, N.; Cottin, H.; et al. Very high resolution mass spectrometry of HCN polymers and tholins. Faraday Discuss.?2010, 147, 495–508, doi:10.1039/c003758c.
[55]
Hanczyc, M.M. Metabolism and motility in prebiotic structures. Phylosophi. Trans. B?2011, 366, 2885–2895, doi:10.1098/rstb.2011.0141.
[56]
De la Fuente, J.L.; Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S. Thermal characterization of HCN polymers by TG-MS, TG, DTA and DSC methods. Polym. Degrad. Stab.?2011, 96, 943–948, doi:10.1016/j.polymdegradstab.2011.01.033.
[57]
He, C.; Lin, G.; Upton, K.T.; Imanaka, H.; Smith, M.A. Structural investigation of HCN polymer isotopomers by solution-state multidimensional NMR. J. Phys. Chem. A?2012, 116, 4751–4759, doi:10.1021/jp301604f.
[58]
Ferris, J.P.; Hagan, W.J. HCN and Chemicals evolution: The possible role of cyano compounds in prebiotic síntesis. Tetrahedron?1984, 40, 1093–1120, doi:10.1016/S0040-4020(01)99315-9.
[59]
Schwartz, A.W.; Voet, A.B. Recent progress in the prebiotic chemistry of HCN. Orig. Life?1984, 14, 91–98, doi:10.1007/BF00933644.
[60]
Saladino, R.; Crestini, C.; Costanzo, G.; DiMauro, E. Advances in the prebiotic synthesis of nucleic acids bases: Implications for the origin of Life. Curr. Org. Chem.?2004, 8, 1425–1443, doi:10.2174/1385272043369836.
[61]
Matthews, C.N.; Minard, R.D. Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss.?2006, 133, 393–401, doi:10.1039/b516791d.
[62]
Miller, S.L. A production of amino acids under possible primitive Earth conditions. Science?1953, 117, 528–529, doi:10.1126/science.117.3046.528. 13056598
[63]
Oró, J.; Kamat, S.S. Amino-acids synthesis from hydrogen cyanide under possible pritive Earth conditions. Nature?1961, 190, 442–443, doi:10.1038/190442a0.
[64]
Sanchez, R.A.; Ferris, J.P.; Orgel, L.E. Studies in prebiotic synthesis II, Synthesis of purine precursors anda mino acids from aqueous hydrogen cyanide. J. Mol. Biol.?1967, 30, 223–252. 4297187
[65]
Stribling, R.; Miller, S.L. Energy yields for hydrogen cyanide and formaldehyde syntheses: The HCN and amino acid concentrations in the primitive ocean. Orig. Life?1987, 17, 261–273, doi:10.1007/BF02386466.
[66]
Miyakawa, S.; Cleaves, H.J.; Miller, S.L. The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig. Life Evol. Biosph.?2002, 32, 209–218, doi:10.1023/A:1019514022822.
[67]
Levy, M.; Miller, S.L.; Brinton, K.; Bada, J.L. Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus?2000, 145, 609–123, doi:10.1006/icar.2000.6365.
[68]
Garzón, L.; Garzón, M.L. Radioactivity as a significant energy source in prebiotic synthesis. Orig. Life Evol. Biosph.?2001, 31, 3–13, doi:10.1023/A:1006664230212.
[69]
Abelson, P.H. Chemical events on the primitive Earth. Proc. Natl. Acad. Sci.USA?1966, 55, 1365–1372, doi:10.1073/pnas.55.6.1365.
[70]
Draganic, Z.; Draganic, I. Evidence for amino acids in hydrolysates of compounds formed by ionizing radiations. Orig. Life?1977, 8, 371–376, doi:10.1007/BF00927908.
[71]
Draganic, Z.D.; Niketic, V.; Jovanovic, S.; Draganic, I.G. The radiolysis of aqueous ammonium cyanide: Compounds of interest to chemical evolution studies. J. Mol. Evol.?1980, 15, 239–260, doi:10.1007/BF01732951.
[72]
Labadie, M.; Jensen, R.; Neuzil, E. Recherches sur I’évolution pré-biologique III. Les acides azulmiques noirs formés à partir du cyanure d’ammonium. Biochim. Biophys. Acta?1968, 165, 525–533, doi:10.1016/0304-4165(68)90233-X.
Yuasa, S.; Flory, D.; Basile, B.; Oró, J. On the abiotic formation of amino acids I. HCN as precursors of amino acids detected in extracts of lunar samples II. Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples. J. Mol. Evol.?1984, 20, 52–58, doi:10.1007/BF02101985.
[76]
Labadie, M.; Jensen, R.; Neuzil, E. Recherches sur l’eévolution pré-biologique. I. Composition en amino-acides des microsphérules obtenues a partir du cyanure d’ammonium. Bull. Soc. Chim. Biol.?1967, 49, 673–682. 6060515
[77]
Lowe, C.U.; Ress, A.; Markham, F.R.S. Synthesis of complex organic compounds from simple precursors: Formation of amino-acids, amino-acid polymer, fatty acids and purines from ammonium cyanide. Nature?1963, 19, 219–222, doi:10.1038/199219a0.
[78]
Oró, J.; Kimball, P. Synthesis of purines under possible primitive Earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys.?1962, 94, 217–227.
[79]
Ferris, J.P.; Wos, J.D.; Nooner, D.W.; Oró, J. Chemical evolution XXI. The amino acids released on hydrolysis f HCN oligomers. J. Mol. Evol.o?1974, 3, 225–231, doi:10.1007/BF01797455.
[80]
Ferris, J.P.; Donner, D.B.; Lobo, A.P. Possible role of hydrogen cyanide in chemical evolution: Investigation of prposed direct synthesis of peptides from hydrogen cyanide. J. Mol. Biol.?1973, 74, 499–510, doi:10.1016/0022-2836(73)90042-9.
Ferris, J.P.; Joshi, P.C.; Edelson, E.H.; Lawless, J.G. HCN: A plausible source of purines, pyrimidines and amino acids on the primitive Earth. J. Mol. Evol.?1978, 11, 293–311, doi:10.1007/BF01733839.
[83]
Mizutani, H.; Mikuni, H.; Takahasi, M.; Noda, H. Study on the photochemical reaction of HCN and its polymers products relating to primary chemical evolution. Orig. Life?1975, 6, 513–525, doi:10.1007/BF00928899.
[84]
Sweeney, M.A.; Toste, A.P.; Ponnamperuma, C. Formation of amino acids by Cobalt-60 irradiation of hydrogen cyanide solutions. Orig. Life?1976, 7, 187–189, doi:10.1007/BF00926936.
[85]
Ferris, J.P.; Wos, J.D.; Lobo, A.P. Chemical Evolution. XXII. The hydantoins released on hydrolysis of HCN oligomers. J. Mol. Evol.?1974, 3, 311–316, doi:10.1007/BF01796046.
[86]
Ferris, J.P.; Donner, D.B.; Lobo, A.P. Possible role of hydrogen cyanide in Chemicals evolution: The oligomerization and condensation of hydrogen cyanide. J. Mol. Biol.?1973, 74, 511–518, doi:10.1016/0022-2836(73)90043-0.
[87]
Miller, S.L.; Orgel, L.E. The Origins of Life on the Earth; Prentice-Hall: New York, NY, USA, 1974.
[88]
Gilbert, W. The origin of life: The RNA world. Nature?1986, 319, 618, doi:10.1038/319618a0.
[89]
Sheppard, T.P.; Ordoukhanian, P.; Joyce, G.F. A DNA enzyme with N-glycosylase activity. Proc. Natl. Acad. Sci. USA?2000, 97, 7802–7807, doi:10.1073/pnas.97.14.7802.
[90]
Santoro, S.W.; Joyce, G.F.; Sakthivel, K.; Gramatikova, S.; Barbas, C.F., III. RNA cleavage by a DNA enzymewith extended chemical functionality. J. Am. Chem. Soc.?2000, 122, 2433–2439, doi:10.1021/ja993688s.
[91]
Pullman, B. Electronic Factors in Biochemical Evolution. In Exobiology; Ponnamperuma, C., Ed.; North Holland Publishing Company: Amsterdam, The Netherlands and London, UK, 1972; p. 140.
[92]
Sanchez, R.A.; Ferris, J.P.; Orgel, L.E. Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures? Science?1966, 153, 72–73, doi:10.1126/science.153.3731.72. 5938419
[93]
Schwartz, A.W.; Joosten, H.; Voet, A.B. Prebiotic adenine synthesis via HCN oligomerization in ice. BioSystems?1982, 15, 191–193, doi:10.1016/0303-2647(82)90003-X.
[94]
Schwartz, A.W.; Goverde, M. Acceleration of HCN oligomerization by formaldehyde and related compounds: Implications for prebiotic synthesis. J. Mol. Evol.?1982, 18, 351–353, doi:10.1007/BF01733902.
[95]
Voet, A.B.; Schwartz, A.W. Prebiotic adenine synthesis from HCN—Evidence for a newly discorvered major pathway. Bioorg. Chem.?1983, 12, 8–17, doi:10.1016/0045-2068(83)90003-2.
[96]
Schwartz, A.W.; Bakker, C.G. Was adenine the first purine? Science?1989, 245, 1102–1104, doi:10.1126/science.11538344. 11538344
[97]
Negrón-Mendoza, A.; Draganic, Z.D. Search for heterocyclic radiolytic products in aqueous Solutions of cyanide. Adv. Space Res.?1984, 4, 121–124, doi:10.1016/0273-1177(84)90553-2.
[98]
Borquez, E.; Cleaves, H.J.; Lazcano, A.; Miller, S.L. An investigation of prebiotic purine synthesis from the hydrolysis of HCN polymers. Orig. Life Evol. Biosph.?2005, 35, 79–90, doi:10.1007/s11084-005-5945-9.
[99]
Levy, M.; Miller, S.L.; Oró, J. Production of guanine from NH4CN polymerizations. J. Mol. Evol.?1999, 49, 165–168, doi:10.1007/PL00006539.
[100]
Ferris, J.P.; Orgel, L.E. An inusual photochemical rearrangement in the shyntesis of adenine from hydrogen cyanide. J. Am. Chem. Soc.?1966, 88, 1074–1074, doi:10.1021/ja00957a050.
[101]
Ferris, J.P.; Orgel, L.E. Studies in Prebiotic Synthesis. I. Aminomalononitrile and 4-Amino-5-cyanoimidazole. J. Am. Chem. Soc.?1966, 88, 3829–3831, doi:10.1021/ja00968a028.
[102]
Ferris, J.P.; Joshi, P.C.; Lawless, J.G. Chemical evolution XXIX. Pyrimidines from hydrogen cyanide. BioSystems?1977, 9, 81–86, doi:10.1016/0303-2647(77)90015-6.
Negrón-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Draganic, I.G. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous Solutions of cyanides and simple nitriles. Rad. Res.?1983, 95, 248–261, doi:10.2307/3576253.
[105]
Negrón-Mendoza, A.; Ramos-Bernal, S.; Cruz, E.; Juárez, J.M. Radiolysis of HCN in heterogeneous phase. Rad. Phys. Chem.?2001, 61, 771–772, doi:10.1016/S0969-806X(01)00400-5.
[106]
Eschenmoser, A. On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle. Chem. Biodiver.?2007, 4, 554–573, doi:10.1002/cbdv.200790050.
[107]
Smith, E.; Morowitz, H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA?2004, 101, 13168–13173, doi:10.1073/pnas.0404922101.
[108]
Eschenmoser, A.; Loewenthal, E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev.?1992, 21, 1–16, doi:10.1039/cs9922100001.
[109]
Eschenmosr, A. Vitamin BI2: Experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed.?1988, 27, 5–39, doi:10.1002/anie.198800051.
[110]
Visser, C.M. Evolutionary roots of catalysis by nicotinamida and flavins in C-H oxidoreductases and in photosynthesis. Orig. Life?1982, 12, 165–179, doi:10.1007/BF00927143.
[111]
Schimpl, A.; Lemmon, R.M.; Calvin, M. Cyanamide formation under primitive Earth conditions. Science?1965, 147, 149–150, doi:10.1126/science.147.3654.149. 17790694