A necessary, but not sufficient, mathematical condition for the coexistence of short replicating species is presented here. The mathematical condition is obtained for a prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling, variable reaction order and a fixed monomer inlet flow with two replicator types and two monomer types. An extensive exploration of the parameter space in the model validates the robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets meeting the condition and half of those exhibiting sustained coexistence. The results show that it is possible to generate a condition of coexistence, where two replicators sustain a linear growth simultaneously for a wide variety of chemistries, under an appropriate environment. The presence of multiple monomer types is critical to sustaining the coexistence of multiple replicator types.
References
[1]
Eigen, M.; Schuster, P. The hypercycle, a principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften?1977, 64, 541–565, doi:10.1007/BF00450633. 593400
[2]
Chen, I.A.; Nowak, M.A. From prelife to life: How chemical kinetics become evolutionary dynamics. Acc. Chem. Res.?2012, 45, 2088–2096, doi:10.1021/ar2002683. 22335792
[3]
Pross, A.; Khodorkovsky, V. Extending the concept of kinetic stability: Toward a paradigm for life. J. Phys. Org. Chem.?2004, 17, 312–316, doi:10.1002/poc.729.
[4]
Lifson, S.; Lifson, H. A model of prebiotic replication: Survival of the fittest versus extinction of the unfittest. J. Theor. Biol.?1999, 199, 425–433, doi:10.1006/jtbi.1999.0969. 10441460
[5]
Walker, S.I.; Grover, M.A.; Hud, N.V. Universal sequence replication,reversible polymerization and early functional biopolymers: A model for the initiation of prebiotic sequence evolution. PLoS One?2012, 7, e34166, doi:10.1371/journal.pone.0034166. 22493682
[6]
Yarus, M. Darwinian behavior in a cold,sporadically fed pool of ribonucleotides. Astrobiology?2012, 12, 870–883, doi:10.1089/ast.2012.0860. 22946838
[7]
King, G. Was there a prebiotic soup? J. Theor. Biol.?1986, 123, 493–498, doi:10.1016/S0022-5193(86)80216-8.
[8]
Chacon, P.; Nuno, J. Spatial dynamics of a model for prebiotic evolution. Phys. D?1995, 81, 398–410, doi:10.1016/0167-2789(94)00214-B.
Bean, H.; Anet, F.; Gould, I.; Hud, N. Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig. Life Evol. B?2006, 36, 39–63, doi:10.1007/s11084-005-2082-4.
Hong, L.; Qi, X.; Zhang, Y. Dissecting the kinetic process of amyloid fiber formation through asymptotic analysis. J. Phys. Chem. B?2012, 116, 6611–6617, doi:10.1021/jp205702u. 22126094
[14]
Pedersen, J.T.; ?stergaard, J.; Rozlosnlk, N.; Gammelgaard, B.; Heegaard, N.H. Cu (II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides. J. Biol. Chem.?2011, 286, 26952–26963, doi:10.1074/jbc.M111.220863. 21642429
[15]
Morris, A.M.; Watzky, M.A.; Agar, J.N.; Finke, R.G. Fitting neurological protein aggregation kinetic data via a 2-Step,minimal/Ockhams razor model: The Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry?2008, 47, 2413–2427, doi:10.1021/bi701899y. 18247636
[16]
Martin, O.; Horvath, J.E. Biological evolution of replicator systems: Towards a quantitative approach. Orig. Life Evol. B?2013, 43, 151–160, doi:10.1007/s11084-013-9327-4.
[17]
Szathmary, E.; Smith, J.M. From replicators to reproducers: The first major transitions leading to life. J. Theor. Biol.?1997, 187, 555–571, doi:10.1006/jtbi.1996.0389. 9299299
[18]
Wu, M.; Higgs, P.G. Origin of self-replicating biopolymers: Autocatalytic feedback can jump-start the RNA world. J. Mol. Evol.?2009, 69, 541–554, doi:10.1007/s00239-009-9276-8. 19777150
[19]
Scheuring, I.; Szathmary, E. Survival of replicators with parabolic growth tendency and exponential decay. J. Theor. Biol.?2001, 212, 99–105, doi:10.1006/jtbi.2001.2360. 11527448
[20]
Bailey, J.E.; Ollis, D.F. Biochemical Engineering Fundamentals, 2nd ed. ed.; McGraw-Hill Company: New York, NY, USA, 1986. Chapter 9; p. 533.
[21]
Nauman, E.B. Chemical Reactor Design,Optimization and Scaleup, 2nd ed. ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. Chapter 12; p. 445.
[22]
Wright, D.H. A simple,stable model of mutualism incorporating handling time. Am. Nat.?1989, 134, 664–667, doi:10.1086/285003.
[23]
Hsu, S.B.; Hwang, T.W.; Kuang, Y. Rich dynamics of a ratio-dependent one-prey two-predators model. J. Math. Biol.?2001, 43, 377–396, doi:10.1007/s002850100100. 11767203
[24]
Xie, C.; Fan, M.; Zhao, W. Dynamics of a discrete stoichiometric two predators one prey model. J. Biol. Syst.?2010, 18, 649–667, doi:10.1142/S0218339010003457.
[25]
Ko, W.; Ahn, I. A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: I,long time behavior and stability of equilibria. J. Math. Anal. Appl.?2013, 397, 9–28, doi:10.1016/j.jmaa.2012.07.026.
[26]
Deck, C.; Jauker, M.; Richert, C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat. Chem.?2011, 3, 603–608, doi:10.1038/nchem.1086. 21778979
[27]
Luther, A.; Brandsch, R.; von Kiedrowski, G. Surface-promoted replication and exponential amplification of DNA analogues. Nature?1998, 396, 245–248, doi:10.1038/24343. 9834031
[28]
Fogler, H.S. Elements of Chemical Reaction Engineering, 4th ed. ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2005. Chapter 12; pp. 833–834.
[29]
Von Kiedrowski, G. Minimal replocator theory I: Parabolic versus exponential growth. Bioorg. Chem. Front.?1993, 3, 113–146.
[30]
Szathmary, E.; Gladkih, I. Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol.?1989, 138, 55–58, doi:10.1016/S0022-5193(89)80177-8. 2483243
[31]
Takeuchi, N.; Hogeweg, P. Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life. J. Mol. Evol.?2012, 9, 219–263.
[32]
Takeuchi, N.; Hogeweg, P. Multilevel selection in models of prebiotic evolution II: A direct comparison of compartamentalization and spatial self-organization. PLoS Comp. Biol.?2009, 5, e1000542, doi:10.1371/journal.pcbi.1000542.
[33]
McKay, M.; Beckman, R.; Conover, W. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics?1979, 21, 239–245.