The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller’s famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller’s experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O’Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 10 2–10 4 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.
References
[1]
Miller, S.L. A production of amino acids under possible primitive earth conditions. Science?1953, 117, 528–529.
[2]
Oparin, A.I.; Lorenz, R.D.; Lunine, J.I. The Origin of Life; U.S. Government Printing Office: Washington, DC, USA, 1968.
[3]
Lob, W. Uber des Verhalten des Formamids Unter der Wirkung der stillen Entladung, Ein Beitrag zur Stickstoff-Assimilation. Berichte der Deutschen Chemischen Gesellschaft?1913, 46, 684–697. (in German).
[4]
Garrison, W.M.; Morrison, J.G.; Hamilton, A.A.; Benson, M.; Calvin, M. The reduction of carbon dioxide by ionizing radiation. Science?1951, 114, 416–418.
[5]
Kasting, J.F.; Pollack, J.B.; Crisp, D. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem.?1984, 1, 403–428, doi:10.1007/BF00053803.
[6]
Kasting, J.F. Early Earth’s atmosphere. Science?1993, 259, 920–926, doi:10.1126/science.11536547.
Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph.?2008, 38, 105–115, doi:10.1007/s11084-007-9120-3.
[9]
Bada, J.L. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev.?2013, 42, 2186–2196, doi:10.1039/c3cs35433d.
[10]
Schulze-Makuch, D.; Grinspoon, D.H. Biologically enhanced energy and carbon cycling on Titan? Astrobiology?2005, 5, 560–567, doi:10.1089/ast.2005.5.560.
[11]
O’Brien, D.P.; Lorenz, R.D.; Lunine, J.I. Numerical calculations of the longevity of impact oases on Titan. Icarus?2005, 173, 243–253, doi:10.1016/j.icarus.2004.08.001.
[12]
Fischer, G.; Gurnett, D.A. The search for Titan lightning radio emissions. Geophys. Res. Lett.?2011, 38, doi:10.1029/2011GL047316.
[13]
Horvath, G.; Skalny, J.D.; Mason, N.J.; Klas, M.; Zahoran, M.; Vladoiu, R.; Manole, M. Corona discharge experiments in admixtures of N2 and CH4: A laboratory simulation of Titan’s atmosphere. Plasma Sources Sci. Technol.?2009, 18, doi:10.1088/0963-0252/18/3/034016.
[14]
Plankensteiner, K.; Reiner, H.; Rode, B.M.; Mikoviny, T.; Wisthaler, A.; Hansel, A.; M?rk, T.D.; Fischer, G.; Lammer, H.; Rucker, H.O. Discharge experiments simulating chemical evolution on the surface of Titan. Icarus?2007, 187, 616–619, doi:10.1016/j.icarus.2006.12.018.
[15]
Scripps Center for Metabolomics. Available online: http://metlin.scripps.edu/ (accessed on 4 November 2013).
[16]
Lavvas, P.; Yelle, R.V.; Vuitton, V. The detached haze layer in Titan’s mesophere. Icarus?2009, 201, 626–633, doi:10.1016/j.icarus.2009.01.004.
[17]
Horst, S.M.; Yelle, R.V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O’Brien, E.; Smith, M.A.; Somogyi, A.; et al. Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment. Astrobiology?2012, 12, 809–817, doi:10.1089/ast.2011.0623.