全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Land  2013 

Land Cover Change Detection in Ulaanbaatar Using the Breaks for Additive Seasonal and Trend Method

DOI: 10.3390/land2040534

Keywords: urban expansion, land cover change detection, NDVI time series, MODIS, Ulaanbaatar

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ulaanbaatar, the capital of Mongolia, has expanded rapidly over the past decade. Insufficient authority is in place to address this expansion, and many residential plots have been developed in the peripheral regions of the city. The aim of this study is to estimate changes in land cover within the central part of Ulaanbaatar, which has been affected by anthropogenic disturbances. The breaks for additive seasonal and trend (BFAST) method is a powerful tool for implementing this study because it is able to robustly and automatically derive the timing and locations of land cover changes from spatio-temporal datasets. We applied the BFAST method for the first time to urban expansion analysis, with NDVI time series calculated from MODIS (MOD09A1 product) during the period 2000–2010. The results show that land cover has changed across 22.51% of the study area, and that the change occurs at a later time with increasing distance from the city center. Bi-temporal high-resolution satellite images of a sample area in 2000 and 2008 confirmed that the detection of land cover changes by BFAST corresponds to areas in which residential development is dominant. This study demonstrates that BFAST is an effective method for monitoring urban expansion. In addition, it increases the applicability of NDVI time series.

References

[1]  Department of Economic and Social Affairs of United Nations. World Urbanization Prospects, The 2011 Revision. 2012. Available online: http://esa.un.org/unpd/wup/index.htm (accessed on 3 July 2013).
[2]  Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plann. 2011, 75, 53–107, doi:10.1016/j.progress.2011.04.001.
[3]  Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088, doi:10.1073/pnas.1211658109.
[4]  Seto, K.C.; Roberto, S.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Env. Resour. 2010, 35, 167–194, doi:10.1146/annurev-environ-100809-125336.
[5]  Mcdonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703, doi:10.1016/j.biocon.2008.04.025.
[6]  Rojas, C.; Pino, J.; Basnou, C.; Vivanco, M. Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepción (Chile). Implications for biodiversity conservation. Appl. Geog. 2013, 39, 93–103, doi:10.1016/j.apgeog.2012.12.007.
[7]  Habibi, S.; Asadi, N. Causes, results and methods of controlling urban sprawl. Procedia. Eng. 2011, 21, 133–141, doi:10.1016/j.proeng.2011.11.1996.
[8]  D??s, B.R. Population growth and loss of arable land. Glob. Environ. Chang. 2002, 12, 303–311, doi:10.1016/S0959-3780(02)00043-2.
[9]  Hasse, J.E.; Lathrop, R.G. Land resource impact indicators of urban sprawl. Appl. Geog. 2003, 23, 159–175, doi:10.1016/j.apgeog.2003.08.002.
[10]  DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181, doi:10.1038/ngeo756.
[11]  Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS J. Photogramm.Remote Sens. 2011, 66, 235–246, doi:10.1016/j.isprsjprs.2010.10.002.
[12]  Augustijn-Beckers, E.-W.; Flacke, J.; Retsios, B. Simulating informal settlement growth in Dar es Salaam, Tanzania: An agent-based housing model. Comput. Environ. Urban. 2011, 35, 93–103, doi:10.1016/j.compenvurbsys.2011.01.001.
[13]  Kamata, T.; Reichert, J.A.; Tsevegmid, T.; Kim, Y.; Sedgewick, B. Mongolia Enhancing Policies and Practices for Ger Area Development in Ulaanbaatar; The World Bank: Washington, DC, USA, 2010.
[14]  Solongo, A. Growth of Internal and International Migration in Mongolia. In Proceedings of 8th International Conference of Asia Pacific Migration Research Network—Migration, Development and Poverty Reduction, Fuzhou, China, 25–29 May 2007.
[15]  Byambadorj, T.; Amati, M.; Ruming, K.J. Twenty-first century nomadic city: Ger districts and barriers to the implementation of the Ulaanbaatar city master plan. Asia Pac. Viewp. 2011, 52, 165–177, doi:10.1111/j.1467-8373.2011.01448.x.
[16]  National Statistics Office of Mongolia. Mongolian Statistical Yearbook; National Statistics Office of Mongolia: Ulaanbaatar, Mongolia, 2011.
[17]  UN-Habitat. UN-Habitat Planning for Disaster Risk Reduction in Ulaanbaatar—The Unur Community Action Plan Closing Workshop GUSIP Report; UN-Habitat Mongolia Office: Ulaanbaatar, Mongolia, 2010.
[18]  Kamata, T.; Reichert, J.; Tsevegmid, T.; Kim, Y.; Sedgewick, B. Managing Urban Expansion in Mongolia: Best Practices in Scenario-Based Urban Planning; The World Bank: Washington, DC, USA, 2010.
[19]  Asia Development Bank. Economic Update Mongolia; ADB: Manila, Philippine, 2003.
[20]  Batbileg, C. Does Land Privatization Support the Development of Land Market? In Proceedings of International Workshop: Land Policies, Land Registration and Economic Development, Experiences in Central Asian Countries, Tashkent, Uzbekistan, 31 October–3 November 2007.
[21]  Mongolia: Heating in Poor, Peri-Urban Ger areas of Ulaanbaatar; The World Bank: Washington, DC, USA, 2009.
[22]  Tv, R.; Aithal, B.H.; Sanna, D.D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth. Obs. 2012, 18, 329–343, doi:10.1016/j.jag.2012.03.005.
[23]  Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115, doi:10.1016/j.rse.2009.08.014.
[24]  Running, S.W.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt, E.R. Classification Logic for Global Land Cover Analysis. Remote Sens. Environ. 1995, 51, 39–48, doi:10.1016/0034-4257(94)00063-S.
[25]  Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434, doi:10.1016/j.ecolmodel.2005.10.035.
[26]  Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587, doi:10.1016/j.rse.2007.05.017.
[27]  Yu, X.J.; Ng, C.N. Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landsc. Urban Plan. 2007, 79, 96–109, doi:10.1016/j.landurbplan.2006.03.008.
[28]  Jat, M.K.; Garg, P.K.; Khare, D.; Jat, M. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth. Obs. 2008, 10, 26–43, doi:10.1016/j.jag.2007.04.002.
[29]  Alphan, H. Land-use change and urbanization of Adana, Turkey. Land Degrad. Dev. 2003, 14, 575–586, doi:10.1002/ldr.581.
[30]  Weber, C.; Puissant, A. Urbanization pressure and modeling of urban growth: example of the Tunis Metropolitan Area. Remote Sens. Environ. 2003, 86, 341–352, doi:10.1016/S0034-4257(03)00077-4.
[31]  Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2003, 25, 2365–2407.
[32]  Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838, doi:10.1080/01431160801950162.
[33]  Millward, A.A.; Piwowar, J.M.; Howarth, P.J. Time-series analysis of medium-resolution, multisensor satellite data for identifying landscape change. PE&RS 2006, 72, 653–663.
[34]  Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154, doi:10.1016/j.rse.2006.06.018.
[35]  Kleynhans, W.; Olivier, J.C.; Wessels, K.J.; Salmon, B.P.; van den Bergh, F.; Steenkamp, K. Detecting land cover change using an extended kalman filter on MODIS NDVI time-series data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 507–511, doi:10.1109/LGRS.2010.2089495.
[36]  Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980, doi:10.1016/j.rse.2010.08.003.
[37]  Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ. 2009, 73, 512–520, doi:10.1016/j.jaridenv.2008.12.015.
[38]  Buyantuyev, A.; Wu, J. Urbanization diversifies land surface phenology in arid environments: Interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landsc. Urban Plan. 2012, 105, 149–159, doi:10.1016/j.landurbplan.2011.12.013.
[39]  Badamdorj, C. Changes in the internal structure of Ulaanbaatar, Mongolia. Sci. Annu. Korea Mong.Econ. Assoc. 2004, 14, 39–59.
[40]  Jong, R.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Chang. Biol. 2012, 18, 642–655, doi:10.1111/j.1365-2486.2011.02578.x.
[41]  R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011.
[42]  Schucknecht, A.; Erasmi, S.; Niemeyer, I.; Matschullat, J. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur. J. Remote Sens. 2013, 46, 40–59.
[43]  Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide Version 1.3, February 2011. Available online: http://modis-sr.ltdri.org/products/MOD09_UserGuide_v1_3.pdf (accessed on 15 May 2013).
[44]  J?nsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845, doi:10.1016/j.cageo.2004.05.006.
[45]  Erasmi, S.; Bothe, M.; Petta, R.A. Enhanced Filtering of MODIS Time Series Data for the Analysis of Desertification Process in Northeast Brazil. In Proceedings of the ISPRS/ITC-Midterm Symposium—Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2006; pp. 8–11.
[46]  Fang, H.; Liang, S.; Townshend, J.; Dickinson, R. Spatially and temporally continuous LAI data sets based on an integrated filtering method: Examples from North America. Remote Sens. Environ. 2008, 112, 75–93, doi:10.1016/j.rse.2006.07.026.
[47]  Chen, J.; Jo, P.; Jonsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L.; J?nsson, P. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344, doi:10.1016/j.rse.2004.03.014.
[48]  Frelat, R.; Gerard, B. ndvits: NDVI Time Series Extraction and Analysis; R Package Version 1.0.1. Available online: http://cran.r-project.org/package=ndvits (accessed on 10 January 2013).
[49]  Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2009, 114, 106–115.
[50]  Irwin, E.G.; Bockstael, N.E.; Hg, O.; Puga, D.; Ma, T. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677, doi:10.1073/pnas.0705527105.
[51]  Cheng, J.; Masser, I. Urban growth pattern modeling: A case study of Wuhan city, PR China. Landsc. Urban Plan. 2003, 62, 199–217, doi:10.1016/S0169-2046(02)00150-0.
[52]  Sexton, J.O.; Song, X.-P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ 2013, 129, 42–53, doi:10.1016/j.rse.2012.10.025.
[53]  Zanganeh, S.; Sauri, D.; Serra, P.; Modugno, S.; Seifolddini, F.; Pourahmad, A. Urban sprawl pattern and land-use change detection in Yazd , Iran. Habitat Int. 2011, 35, 521–528, doi:10.1016/j.habitatint.2011.02.004.
[54]  Gitas, I.Z.; Katagis, T.; Toukiloglou, P. Burned area mapping and post-fire monitoring of a Mediterranean forest using NDVI time-series of low resolution imagery and the BFAST method. Rev.Ambiência 2012, 8, 461–470, doi:10.5777/ambiencia.2012.04.02.
[55]  Lambert, J.; Jacquin, A.; Denux, J.; Chéret, V. Comparison of Two Remote Sensing Time Series Analysis Methods for Monitoring Forest Decline. In Proceedings of the International Conference on Geographic Information Science (AGILE’2012), Avignon, France, 24–27 April 2012; pp. 93–96.
[56]  Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201, doi:10.1016/S0034-4257(01)00295-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133