Bluetooth Low Energy (BLE) is a recently developed energy-efficient short-range wireless communication protocol. In this paper, we discuss and compare the maximum peer-to-peer throughput, the minimum frame turnaround time, and the energy consumption for three protocols, namely BLE, IEEE 802.15.4 and SimpliciTI. The specifics and the main contributions are the results both of the theoretical analysis and of the empirical measurements, which were executed using the commercially available hardware transceivers and software stacks. The presented results reveal the protocols’ capabilities and enable one to estimate the feasibility of using these technologies for particular applications. Based on the presented results, we draw conclusions regarding the feasibility and the most suitable application scenarios of the BLE technology.
References
[1]
Silicon Laboratories Inc. The evolution of wireless sensor networks. Available online: http://www.silabs.com/Support%20Documents/TechnicalDocs/evolution-of-wireless-sensor-networks.pdf (accessed on 24 June 2013).
[2]
Hatler, M. Industrial wireless sensor networks: Trends and developments. Available online: http://www.isa.org/InTechTemplate.cfm?template=/ContentManagement/ContentDisplay.cfm&ContentID=90824 (accessed on 24 June 2013).
[3]
Bluetooth SIG. Bluetooth Specification Version 4; The Bluetooth Special Interest Group: Kirkland, WA, USA, 2010.
[4]
WTRS Wireless Sensor Network Technology Trends Report; WT062510CNTS; West Technologies Research Solutions: Mountain View, CA, USA, 2010; pp. 1–267.
[5]
Sun, T.; Chen, L.J.; Han, C.C.; Yang, G.; Gerla, M. Measuring Effective Capacity of IEEE 802.15.4 Beaconless Mode. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC’06), Las Vegas, NV, USA, 3–6 April 2006; pp. 493–498.
[6]
Mikhaylov, K.; Tervonen, J. Analysis and evaluation of the maximum throughput for data streaming over IEEE 802.15.4 wireless networks. J. High Speed Netw.. in press .
[7]
Latré, B.; Mil, P.D.; Moerman, I.; Dhoedt, B.; Demeester, P.; Dierdonck, N.V. Throughput and Delay Analysis of Unslotted IEEE 802.15.4. J. Netw. 2006, 1, 20–28.
[8]
Choi, J.S.; Zhou, M. Performance Analysis of ZigBee-Based Body Sensor Networks. In Proceedings of IEEE International Conference on Systems Man and Cybernetics (SMC’10), Istanbul, Turkey, 10–13 October 2010; pp. 2427–2433.
[9]
Liang, X.; Balasingham, I. Performance Analysis of the IEEE 802.15.4 Based ECG Monitoring Network. In Proceedings of IASTED Wireless and Optical Communications Conference (WOC’07), Montreal, QC, Canada, 30 May–1 June 2007; pp. 99–104.
[10]
Zhang, Y.; Atac, A.; Liao, L.; Heinen, S. A Low-Power High-Efficiency Demodulator in Bluetooth Low Energy Receiver. In Proceedings of 8th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME’12), Aachen, Germany, 12–15 June 2012; pp. 1–4.
[11]
Masuch, J.; Delgado-Restituto, M. A 190-microWatt Zero-IF GFSK Demodulator with a 4-b Phase-Domain ADC. IEEE J. Solid-St. Circ. 2012, 47, 2796–2806, doi:10.1109/JSSC.2012.2216211.
[12]
Wong, A.; Dawkins, M.; Devita, G.; Kasparidis, N.; Katsiamis, A.; King, O.; Lauria, F.; Schiff, J.; Burdett, A. A 1 V 5 m A Multimode IEEE 802.15.6 / Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications. In Proceedings of IEEE International Solid-State Circuits Conference (ISSCC’12), San Francisco, CA, USA, 19–23 February 2012; pp. 300–302.
[13]
Yu, B.; Xu, L.; Li, Y. Bluetooth Low Energy (BLE) Based Mobile Electrocardiogram Monitoring System. In Proceedings of International Conference on Information and Automation (ICIA’12), Shenyang, China, 6–8 June 2012; pp. 763–767.
[14]
Ali, M.; Albasha, L.; Al-Nashash, H. A Bluetooth Low Energy Implantable Glucose Monitoring System. In Proceedings of 8th European Radar Conference (EuRAD’11), Manchester, UK, 12–14 October 2011; pp. 377–380.
[15]
Jara, A.J.; Fernandez, D.; Lopez, P.; Zamora, M.A.; Ubeda, B.; Skarmeta, A.G. Evaluation of Bluetooth Low Energy Capabilities for Continuous Data Transmission from a Wearable Electrocardiogram. In Proceedings of 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS’12), Palermo, Italy, 4–6 July 2012; pp. 912–917.
[16]
Liu, J.; Chen, C.; Ma, Y. Modeling Neighbor Discovery in Bluetooth Low Energy Networks. IEEE Commun. Lett. 2012, 16, 1439–1441, doi:10.1109/LCOMM.2012.073112.120877.
[17]
Gomez, C.; Oller, J.; Paradells, J. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-power Wireless Technology. Sensors 2012, 12, 11734–11753, doi:10.3390/s120911734.
[18]
Gomez, C.; Demirkol, I.; Paradells, J. Modeling the Maximum Throughput of Bluetooth Low Energy in an Error-Prone Link. IEEE Commun. Lett. 2011, 15, 1187–1189, doi:10.1109/LCOMM.2011.092011.111314.
[19]
Kamath, S.; Lindh, J. AN092S (WRA347a); Texas Instruments, Inc.: Dallas, TX, USA, 2012; pp. 1–24.
[20]
Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How Low Energy is Bluetooth Low Energy? Comparative Measurements with ZigBee / 802.15.4. In Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW’12), Paris, France, 1 April 2012; pp. 232–237.
[21]
ZigBee Specification; 053474r17; ZigBee Standards Organization: San Ramon, CA, USA, 2008; pp. 1–576.
[22]
Fujii, C.; Seah, W.K.-G. Multi-Tier Probabilistic polling in Wireless Sensor Networks Powered by Energy Harvesting. In Proceedings of 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP’11), Adelaide, SA, USA, 6–9 December 2011; pp. 383–388.
[23]
Skrzypczak, L.; Grimaldi, D.; Rak, R. Basic Characteristics of ZigBee and Simpliciti Modules to Use in Measurement Systems. In Proceedings of 19th IMEKO World Congress, Lisbon, Portugal, 6–11 September 2009; pp. 1456–1460.
[24]
Bertarelli, F. Energy Cluster Aggregation in a WSN Based on EZ430-RF2500 T Nodes and SimpliciTI Protocol. In Proceedings of 4th Education and Research Conference (EDERC’10), Nice, France, 1–2 December 2010; pp. 145–149.
[25]
IEEE 802 Working Group. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs); IEEE Std 802.15.4-2003; 2003; Volume 4, pp. 1–670.
[26]
IEEE 802 Working Group. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs); IEEE Std 802.15.4-2006; 2006; pp. 1–320.
[27]
IEEE 802 Working Group. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs); IEEE Std 802.15.4-2011, 2011; pp. 1–314.
[28]
Aaberge, T. Low Complexity Antenna Diversity for IEEE 802.15.4 2.4 GHz PHY. M.Sc. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, June 2009.
[29]
Texas Instruments SimpliciTITM - RF Made Easy. Available online: http://www.ti.com/simpliciti/ (accessed on 14 June 2013).
[30]
Nakutis, Z. Embedded Systems Power Consumption Measurement Methods Overview. MATAVIMAI 2009, 2, 29–35.
[31]
Mikhaylov, K.; Tervonen, J. Optimization of Microcontroller Hardware Parameters for Wireless Sensor Nnetwork Node Power Consumption and Lifetime Improvement. In Proceedings of 2nd International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT’10), Moscow, Russia, 18–20 October 2010; pp. 1150–1156.
[32]
Mikhaylov, K.; Tervonen, J. Evaluation of Power Efficiency for Digital Serial Interfaces of Microcontrollers. In Proceedings of 5th International Conference on New Technologies, Mobility and Security (NTMS), Istanbul, Turkey, 7–10 May 2012; pp. 1–5.
[33]
Texas Instruments, Low-Power SoC (System-on-Chip) with MCU, Memory, 2.4 GHz RF Transceiver, and USB Controller, 2013, 236.
[34]
Texas Instruments, 802.15.4 MAC Application Programming Interface. SWRA192, 2009, 58.
[35]
Isomaki, M.; Nieminen, J.; Gomez, C.; Shelby, Z.; Savolainen, T.; Patil, B. Transmission of IPv6 Packets over BLUETOOTH Low Energy. Available online: http://tools.ietf.org/html/draft-ietf-6lowpan-btle-12#section-2.4 (accessed on 1 August 2013).
[36]
Wang, H.; Xi, M.; Liu, J.; Chen, C. Transmitting IPv6 Packets over Bluetooth Low Energy Based on BlueZ. In Proceedings of 15th International Conference on Advanced Communication Technology (ICACT’13), PyeongChang, Korea, 27–30 January 2013; pp. 72–77.
[37]
Deering, S.E.; Hinden, R. Internet Protocol, Version 6 (IPv6) Specification. Available online: http://tools.ietf.org/html/rfc2460 (accessed on 1 August 2013).
[38]
WirelessHART; IEC 62591:2010(E); International Electrotechnical Comission: Austin, TX, USA, 2010.
[39]
Wireless Systems for Industrial Automation: Process Control and Related Applications; ANSI/ISA-100.11a-2011; International Society of Automation: Research Triangle Park, NC, USA, 2011; pp. 1–792.
[40]
Kushalnagar, N.; Montenegro, G.; Culler, D.E.; Hui, J.W. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. Available online: http://tools.ietf.org/html/rfc4944 (accessed on 2 August 2013).