全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Open Access Integrated Therapeutic and Diagnostic Platforms for Personalized Cardiovascular Medicine

DOI: 10.3390/jpm3030203

Keywords: pharmacogenomics, echocardiography, electrocardiography, personalized medicine, genomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is undeniable that the increasing costs in healthcare are a concern. Although technological advancements have been made in healthcare systems, the return on investment made by governments and payers has been poor. The current model of care is unsustainable and is due for an upgrade. In developed nations, a law of diminishing returns has been noted in population health standards, whilst in the developing world, westernized chronic illnesses, such as diabetes and cardiovascular disease have become emerging problems. The reasons for these trends are complex, multifactorial and not easily reversed. Personalized medicine has the potential to have a significant impact on these issues, but for it to be truly successful, interdisciplinary mass collaboration is required. We propose here a vision for open-access advanced analytics for personalized cardiac diagnostics using imaging, electrocardiography and genomics.

References

[1]  Lloyd-Jones, D.; Adams, R.; Carnethon, M.; De Simone, G.; Ferguson, T.B.; Flegal, K.; Ford, E.; Furie, K.; Go, A.; Greenlund, K.; et al. Heart disease and stroke statistics—2009 update. Circulation 2009, 119, 480–486, doi:10.1161/CIRCULATIONAHA.108.191259.
[2]  Iglehart, J.K. The new era of medical imaging—Progress and pitfalls. N. Engl. J. Med. 2006, 354, 2822–2828, doi:10.1056/NEJMhpr061219.
[3]  Levin, D.C.; Rao, V.M.; Parker, L.; Frangos, A.J.; Sunshine, J.H. Recent trends in utilization of cardiovascular imaging: How important are they for radiology? J. Am. Coll. Radiol. 2005, 2, 736–739, doi:10.1016/j.jacr.2005.01.015.
[4]  Picano, E. Economic and biological costs of cardiac imaging. Cardiovasc. Ultrasound. 2005, 3, e13, doi:10.1186/1476-7120-3-13.
[5]  Hope, J. Biobazaar: The Open Source Revolution and Biotechnology; Harvard University Press: Cambridge, MA, USA, 2009.
[6]  Topol, E.J. The Creative Destruction of Medicine; Basic Books: New York, NY, USA, 2012.
[7]  Picano, E.; Lombardi, M.; Neglia, D.; Lazzeri, M. sustainability of medical imaging in cardiology. Recenti Prog. Med. 2006, 97, 652–662.
[8]  Picano, E. Sustainability of medical imaging. Br. Med. J. 2004, 328, 578–580, doi:10.1136/bmj.328.7439.578.
[9]  Stoylen, A.; Heimdal, A.; Bjornstad, K.; Torp, H.G.; Skjaerpe, T. Strain rate imaging by ultrasound in the diagnosis of regional dysfunction of the left ventricle. Echocardiography 1999, 16, 321–329, doi:10.1111/j.1540-8175.1999.tb00821.x.
[10]  Cho, J.S.; Kim, K.H.; Lee, W.S.; Yoon, H.J.; Yoon, N.S.; Hong, Y.J.; Park, H.W.; Kim, J.H.; Ahn, Y.; Jeong, M.H.; et al. Usefulness of peak systolic strain measurement by automated function imaging in the prediction of coronary perfusion in patients with acute myocardial infarction. Korean J. Intern. Med. 2010, 25, 260–268, doi:10.3904/kjim.2010.25.3.260.
[11]  Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Cohen, V.; Gosavi, S.; Carver, J.R.; Wiegers, S.E.; Martin, R.P.; et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am. J. Cardiol. 2011, 107, 1375–1380, doi:10.1016/j.amjcard.2011.01.006.
[12]  Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603, doi:10.1161/CIRCIMAGING.112.973321.
[13]  Negishi, K.; Negishi, T.; Hare, J.L.; Haluska, B.A.; Plana, J.C.; Marwick, T.H. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J. Am. Soc. Echocardiogr. 2013, 26, 493–498, doi:10.1016/j.echo.2013.02.008.
[14]  Geisler, T.; Schaeffeler, E.; Dippon, J.; Winter, S.; Buse, V.; Bischofs, C.; Zuern, C.; Moerike, K.; Gawaz, M.; Schwab, M. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 2008, 9, 1251–1259, doi:10.2217/14622416.9.9.1251.
[15]  Kaul, S.; Miller, J.G.; Grayburn, P.A.; Hashimoto, S.; Hibberd, M.; Holland, M.R.; Houle, H.C.; Klein, A.L.; Knoll, P.; Lang, R.M.; et al. A suggested roadmap for cardiovascular ultrasound research for the future. J. Am. Soc. Echocardiogr. 2011, 24, 455–464, doi:10.1016/j.echo.2011.02.017.
[16]  Gladding, P.A.; Anwar, S.; Negishi, K.; Popovic, Z.; Hussan, J.R.; Marwick, T.; Hunter, P.; Kassemi, M.; Levine, B.; Thomas, J. Modeling the heart from echocardiography strain data, collected on the international space station. J. Am. Coll. Cardiol. 2011, 57, E1255, doi:10.1016/S0735-1097(11)61255-2.
[17]  Main, M.L.; Foltz, D.; Firstenberg, M.S.; Bobinsky, E.; Bailey, D.; Frantz, B.; Pleva, D.; Baldizzi, M.; Meyers, D.P.; Jones, K.; et al. Real-time transmission of full-motion echocardiography over a high-speed data network: Impact of data rate and network quality of service. J. Am. Soc. Echocardiogr. 2000, 13, 764–770, doi:10.1067/mje.2000.106075.
[18]  Hamilton, D.R.; Sargsyan, A.E.; Martin, D.S.; Garcia, K.M.; Melton, S.L.; Feiveson, A.; Dulchavsky, S.A. On-orbit prospective echocardiography on international space station crew. Echocardiography 2011, 28, 491–501, doi:10.1111/j.1540-8175.2011.01385.x.
[19]  Martin, D.; Borowski, A.; Bungo, M.W.; Dulchavsky, S.; Gladding, P.; Greenberg, N.; Hamilton, D.; Levine, B.D.; Norwoord, K.; Platts, S.H.; et al. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-Flight Echocardiography Aboard the International Space Station. In Proceedings of American Society of Echocardiography (ASE) 23rd Annual Scientific Sessions, National Harbor, MD, USA, 30 June–3 July 2012.
[20]  Negishi, K.; Anwar, S.; Popovic, Z.B.; Borowski, A.; Martin, D.S.; Bungo, M.F.; Levine, B.D.; Thomas, J.D. Impact of Spaceflight on Myocardial Strain: An Interim Analysis from The Integrated Cardiovascular Study; NASA Human Research Program Investigators’ Workshop: Houston, TX, USA, 2012.
[21]  Singh, S.; Bansal, M.; Maheshwari, P.; Adams, D.; Sengupta, S.P.; Price, R.; Dantin, L.; Smith, M.; Kasliwal, R.R.; Pellikka, P.A.; et al. American society of echocardiography: Remote echocardiography with web-based assessments for referrals at a distance (ase-reward) study. J. Am. Soc. Echocardiogr. 2013, 26, 221–233, doi:10.1016/j.echo.2012.12.012.
[22]  Hunter, P.; Robbins, P.; Noble, D. The iups human physiome project. Pflugers Arch. 2002, 445, 1–9, doi:10.1007/s00424-002-0890-1.
[23]  Anwar, S.; Gladding, P.; Negishi, K.; Popovic, Z.; Thomas, J. Comparison of longitudinal strain by speckle tracking of polar vs dicom images. Heart Lung Circ. 2011, 20, 385.
[24]  Sox, H.C., Jr.; Garber, A.M.; Littenberg, B. The resting electrocardiogram as a screening test. A clinical analysis. Ann. Intern. Med. 1989, 111, 489–502, doi:10.7326/0003-4819-111-6-489.
[25]  Ashley, E.A.; Raxwal, V.; Froelicher, V. An evidence-based review of the resting electrocardiogram as a screening technique for heart disease. Prog. Cardiovasc. Dis. 2001, 44, 55–67, doi:10.1053/pcad.2001.24683.
[26]  Levy, D.; Labib, S.B.; Anderson, K.M.; Christiansen, J.C.; Kannel, W.B.; Castelli, W.P. Determinants of sensitivity and specificity of electrocardiographic criteria for left ventricular hypertrophy. Circulation 1990, 81, 815–820, doi:10.1161/01.CIR.81.3.815.
[27]  Davie, A.P.; Francis, C.M.; Love, M.P.; Caruana, L.; Starkey, I.R.; Shaw, T.R.; Sutherland, G.R.; McMurray, J.J. Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction. Br. Med. J. 1996, 312.
[28]  Hedberg, P.; Lonnberg, I.; Jonason, T.; Nilsson, G.; Pehrsson, K.; Ringqvist, I. Electrocardiogram and B-type natriuretic peptide as screening tools for left ventricular systolic dysfunction in a population-based sample of 75-year-old men and women. Am. Heart J. 2004, 148, 524–529, doi:10.1016/j.ahj.2004.03.034.
[29]  Schlegel, T.T.; Kulecz, W.B.; Feiveson, A.H.; Greco, E.C.; DePalma, J.L.; Starc, V.; Vrtovec, B.; Rahman, M.A.; Bungo, M.W.; Hayat, M.J.; et al. Accuracy of advanced versus strictly conventional 12-lead ecg for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction. BMC Cardiovasc. Disord. 2010, 10, e28, doi:10.1186/1471-2261-10-28.
[30]  Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37, doi:10.1109/34.824819.
[31]  Poplack Potter, S.L.; Holmqvist, F.; Platonov, P.G.; Steding, K.; Arheden, H.; Pahlm, O.; Starc, V.; McKenna, W.J.; Schlegel, T.T. Detection of hypertrophic cardiomyopathy is improved when using advanced rather than strictly conventional 12-lead electrocardiogram. J. Electrocardiol. 2010, 43, 713–718, doi:10.1016/j.jelectrocard.2010.08.010.
[32]  Garrod, A.E. The lancet. The incidence of alkaptonuria: A study in chemical individuality. Nutr. Rev. 1975, 33, 81–83, doi:10.1111/j.1753-4887.1975.tb06025.x.
[33]  Sabatine, M.S.; Morrow, D.A.; de Lemos, J.A.; Jarolim, P.; Braunwald, E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischaemia using an ultrasensitive assay: Results from TIMI 35. Eur. Heart J. 2009, 30, 162–169.
[34]  Wilson, S.R.; Sabatine, M.S.; Braunwald, E.; Sloan, S.; Murphy, S.A.; Morrow, D.A. Detection of myocardial injury in patients with unstable angina using a novel nanoparticle cardiac troponin I assay: Observations from the PROTECT-TIMI 30 Trial. Am. Heart J. 2009, 158, 386–391, doi:10.1016/j.ahj.2009.06.011.
[35]  Djulbegovic, M.; Beyth, R.J.; Neuberger, M.M.; Stoffs, T.L.; Vieweg, J.; Djulbegovic, B.; Dahm, P. Screening for prostate cancer: Systematic review and meta-analysis of randomized controlled trials. Br. Med. J. 2010, 341, c4543.
[36]  Reichlin, T.; Hochholzer, W.; Bassetti, S.; Steuer, S.; Stelzig, C.; Hartwiger, S.; Biedert, S.; Schaub, N.; Buerge, C.; Potocki, M.; et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J. Med. 2009, 361, 858–867, doi:10.1056/NEJMoa0900428.
[37]  Rosjo, H.; Varpula, M.; Hagve, T.A.; Karlsson, S.; Ruokonen, E.; Pettila, V.; Omland, T.; Group, F.S. Circulating high sensitivity troponin t in severe sepsis and septic shock: Distribution, associated factors, and relation to outcome. Intens. Care Med. 2011, 37, 77–85, doi:10.1007/s00134-010-2051-x.
[38]  Lewis, G.D.; Wei, R.; Liu, E.; Yang, E.; Shi, X.; Martinovic, M.; Farrell, L.; Asnani, A.; Cyrille, M.; Ramanathan, A.; et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Investig. 2008, 118, 3503–3512, doi:10.1172/JCI35111.
[39]  Teul, J.; Garcia, A.; Tunon, J.; Martin-Ventura, J.L.; Tarin, N.; Bescos, L.L.; Egido, J.; Barbas, C.; Ruperez, F.J. Targeted and non-targeted metabolic time trajectory in plasma of patients after acute coronary syndrome. J. Pharmaceut. Biomed. Anal. 2011, 56, 343–351, doi:10.1016/j.jpba.2011.05.020.
[40]  Bodi, V.; Sanchis, J.; Morales, J.M.; Marrachelli, V.G.; Nunez, J.; Forteza, M.J.; Chaustre, F.; Gomez, C.; Mainar, L.; Minana, G.; et al. Metabolomic profile of human myocardial ischemia by nuclear magnetic resonance spectroscopy of peripheral blood serum: A translational study based on transient coronary occlusion models. J. Am. Coll. Cardiol. 2012, 59, 1629–1641, doi:10.1016/j.jacc.2011.09.083.
[41]  Addona, T.A.; Shi, X.; Keshishian, H.; Mani, D.R.; Burgess, M.; Gillette, M.A.; Clauser, K.R.; Shen, D.; Lewis, G.D.; Farrell, L.A.; et al. A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat. Biotechnol. 2011, 29, 635–643, doi:10.1038/nbt.1899.
[42]  Sabatine, M.S.; Liu, E.; Morrow, D.A.; Heller, E.; McCarroll, R.; Wiegand, R.; Berriz, G.F.; Roth, F.P.; Gerszten, R.E. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 2005, 112, 3868–3875, doi:10.1161/CIRCULATIONAHA.105.569137.
[43]  Carbonnelle, E.; Mesquita, C.; Bille, E.; Day, N.; Dauphin, B.; Beretti, J.L.; Ferroni, A.; Gutmann, L.; Nassif, X. Maldi-tof mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin. Biochem. 2011, 44, 104–109, doi:10.1016/j.clinbiochem.2010.06.017.
[44]  Brennan, M.L.; Reddy, A.; Tang, W.H.; Wu, Y.; Brennan, D.M.; Hsu, A.; Mann, S.A.; Hammer, P.L.; Hazen, S.L. Comprehensive peroxidase-based hematologic profiling for the prediction of 1-year myocardial infarction and death. Circulation 2010, 122, 70–79, doi:10.1161/CIRCULATIONAHA.109.881581.
[45]  Tonelli, M.; Sacks, F.; Arnold, M.; Moye, L.; Davis, B.; Pfeffer, M.; Cholesterol, F.T.; Investigators, R.E.T. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation 2008, 117, 163–168, doi:10.1161/CIRCULATIONAHA.107.727545.
[46]  Loscalzo, J.; Kohane, I.; Barabasi, A.L. Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol. Syst. Biol. 2007, 3, e124.
[47]  Research, M. Epistasis gwas for 7 common diseases. Available online: http://datamarket.azure.com/dataset/microsoftresearch/epistasisgwas (accessed on 11 July 2013).
[48]  Johnson, M.W.; Amin, M.H.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al. Quantum annealing with manufactured spins. Nature 2011, 473, 194–198, doi:10.1038/nature10012.
[49]  Sengupta, P.P.; Marwick, T.H.; Narula, J. Adding dimensions to unimodal cardiac images. JACC Cardiovasc. Imag. 2011, 4, 816–818, doi:10.1016/j.jcmg.2011.06.003.
[50]  Scott, S.A.; Sangkuhl, K.; Stein, C.M.; Hulot, J.S.; Mega, J.L.; Roden, D.M.; Klein, T.E.; Sabatine, M.S.; Johnson, J.A.; Shuldiner, A.R. Clinical pharmacogenetics implementation consortium (cpic) guidelines for cytochrome p450-2c19 (cyp2c19) genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 2013, doi:10.1038/clpt.2013.105.
[51]  Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. Slco1b1 variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799, doi:10.1056/NEJMoa0801936.
[52]  Pare, G.; Eriksson, N.; Lehr, T.; Connolly, S.; Eikelboom, J.; Ezekowitz, M.D.; Axelsson, T.; Haertter, S.; Oldgren, J.; Reilly, P.; et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 2013, 127, 1404–1412, doi:10.1161/CIRCULATIONAHA.112.001233.
[53]  Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.; Pirmohamed, M.; et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Int. J. Clin. Pharmacol. Ther. 2011, 90, 625–629, doi:10.1038/clpt.2011.185.
[54]  Ellinor, P.T.; Lunetta, K.L.; Albert, C.M.; Glazer, N.L.; Ritchie, M.D.; Smith, A.V.; Arking, D.E.; Muller-Nurasyid, M.; Krijthe, B.P.; Lubitz, S.A.; et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 2012, 44, 670–675.
[55]  Lubitz, S.A.; Sinner, M.F.; Lunetta, K.L.; Makino, S.; Pfeufer, A.; Rahman, R.; Veltman, C.E.; Barnard, J.; Bis, J.C.; Danik, S.P.; et al. Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation 2010, 122, 976–984, doi:10.1161/CIRCULATIONAHA.109.886440.
[56]  Parvez, B.; Shah, A.; Muhammad, R.; Shoemaker, M.; Graves, A.J.; Heckbert, S.R.; Xu, H.; Ellinor, P.T.; Benjamin, E.J.; Alonso, A.; et al. Replication of a risk prediction model for ambulatory incident atrial fibrillation using electronic medical record. Circulation 2012, 126, A18578.
[57]  Parvez, B.; Vaglio, J.; Rowan, S.; Muhammad, R.; Kucera, G.; Stubblefield, T.; Carter, S.; Roden, D.; Darbar, D. Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. J. Am. Coll. Cardiol. 2012, 60, 539–545, doi:10.1016/j.jacc.2012.01.070.
[58]  Benjamin Shoemaker, M.; Muhammad, R.; Parvez, B.; White, B.W.; Streur, M.; Song, Y.; Stubblefield, T.; Kucera, G.; Blair, M.; Rytlewski, J.; et al. Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm 2013, 10, 394–400, doi:10.1016/j.hrthm.2012.11.012.
[59]  Husser, D.; Adams, V.; Piorkowski, C.; Hindricks, G.; Bollmann, A. Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 2010, 55, 747–753.
[60]  Parvez, B.; Benjamin Shoemaker, M.; Muhammad, R.; Richardson, R.; Jiang, L.; Blair, M.A.; Roden, D.M.; Darbar, D. Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm 2013, 10, 849–855, doi:10.1016/j.hrthm.2013.02.018.
[61]  Qiu, F.; Gu, K.; Yang, B.; Ding, Y.; Jiang, D.; Wu, Y.; Huang, L.L. DNA assay based on monolayer-barcoded nanoparticles for mass spectrometry in combination with magnetic microprobes. Talanta 2011, 85, 1698–1702, doi:10.1016/j.talanta.2011.06.045.
[62]  Taira, S.; Osaka, I.; Shimma, S.; Kaneko, D.; Hiroki, T.; Kawamura-Konishi, Y.; Ichiyanagi, Y. Oligonucleotide analysis by nanoparticle-assisted laser desorption/ionization mass spectrometry. Analyst 2012, 137, 2006–2010, doi:10.1039/c2an16237g.
[63]  Smith, A.D.; Cowan, J.O.; Brassett, K.P.; Herbison, G.P.; Taylor, D.R. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N. Engl. J. Med. 2005, 352, 2163–2173, doi:10.1056/NEJMoa043596.
[64]  Rhodes, J.M.; Middleton, P.; Jewell, D.P. The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand. J. Gastroenterol. 1979, 14, 333–336, doi:10.3109/00365527909179892.
[65]  Cikach, F.S., Jr.; Dweik, R.A. Cardiovascular biomarkers in exhaled breath. Prog. Cardiovasc. Dis. 2012, 55, 34–43, doi:10.1016/j.pcad.2012.05.005.
[66]  Martinez-Lozano Sinues, P.; Kohler, M.; Zenobi, R. Human breath analysis may support the existence of individual metabolic phenotypes. PLoS One 2013, 8, e59909, doi:10.1371/journal.pone.0059909.
[67]  Samara, M.A.; Tang, W.H.; Cikach, F., Jr.; Gul, Z.; Tranchito, L.; Paschke, K.M.; Viterna, J.; Wu, Y.; Laskowski, D.; Dweik, R.A. Single exhaled breath metabolomic analysis identifies unique breathprint in patients with acute decompensated heart failure. J. Am. Coll. Cardiol. 2013, 61, 1463–1464, doi:10.1016/j.jacc.2012.12.033.
[68]  Phillips, M.; Cataneo, R.N.; Greenberg, J.; Grodman, R.; Salazar, M. Breath markers of oxidative stress in patients with unstable angina. Heart Dis. 2003, 5, 95–99, doi:10.1097/01.hdx.0000061701.99611.e8.
[69]  Bhasin, M.K.; Dusek, J.A.; Chang, B.H.; Joseph, M.G.; Denninger, J.W.; Fricchione, G.L.; Benson, H.; Libermann, T.A. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS One 2013, 8, e62817.
[70]  Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39, doi:10.1016/j.cccn.2004.04.023.
[71]  Shevade, A.V.; Homer, M.L.; Kisor, A.K.; Yen, S.-P.S.; Lara, L.M.; Zhou, H.; Manatt, K.S.; Gluck, S.; Ryan, M.A. The Technology Demonstration of the Third Generation Jpl Electronic Nose on the International Space Station. In Human Olfactory Displays and Interfaces: Odor Sensing and Presentation; IGI Global: Hershey, PA, USA, 2013; pp. 275–295.
[72]  Ryan, M.A.; Hanying, Z.; Buehler, M.G.; Manatt, K.S.; Mowrey, V.S.; Jackson, S.P.; Kisor, A.K.; Shevade, A.V.; Homer, M.L. Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose. Sens. J. IEEE 2004, 4, 337–347.
[73]  Zhou, H.; Homer, M.; Shevade, A.; Ryan, M. Nonlinear least-squares based method for identifying and quantifying single and mixed contaminants in air with an electronic nose. Sensors 2005, 6, 1–18, doi:10.3390/s6010001.
[74]  Kateb, B.; Ryan, M.A.; Homer, M.L.; Lara, L.M.; Yin, Y.; Higa, K.; Chen, M.Y. Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. NeuroImage 2009, 47, T5–T9.
[75]  Gardy, J.L.; Johnston, J.C.; Sui, S.J.H.; Cook, V.J.; Shah, L.; Brodkin, E.; Rempel, S.; Moore, R.; Zhao, Y.; Holt, R.; et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 2011, 364, 730–739, doi:10.1056/NEJMoa1003176.
[76]  Loscalzo, J. Personalized cardiovascular medicine and drug development: Time for a new paradigm. Circulation 2012, 125, 638–645, doi:10.1161/CIRCULATIONAHA.111.089243.
[77]  Christakis, N.A.; Fowler, J.H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 2007, 357, 370–379, doi:10.1056/NEJMsa066082.
[78]  Christakis, N.A.; Fowler, J.H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 2008, 358, 2249–2258, doi:10.1056/NEJMsa0706154.
[79]  Lin, D.; Hollander, Z.; Meredith, A.; Stadnick, E.; Sasaki, M.; Cohen Freue, G.; Qasimi, P.; Mui, A.; Ng, R.T.; Balshaw, R.; et al. Molecular signatures of end-stage heart failure. J. Card. Fail. 2011, 17, 867–874, doi:10.1016/j.cardfail.2011.07.001.
[80]  Sinnaeve, P.R.; Donahue, M.P.; Grass, P.; Seo, D.; Vonderscher, J.; Chibout, S.D.; Kraus, W.E.; Sketch, M., Jr.; Nelson, C.; Ginsburg, G.S.; et al. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS One 2009, 4, e7037, doi:10.1371/journal.pone.0007037.
[81]  Rosenberg, S.; Elashoff, M.R.; Beineke, P.; Daniels, S.E.; Wingrove, J.A.; Tingley, W.G.; Sager, P.T.; Sehnert, A.J.; Yau, M.; Kraus, W.E.; et al. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann. Intern. Med. 2010, 153, 425–434, doi:10.7326/0003-4819-153-7-201010050-00005.
[82]  Pham, M.X.; Teuteberg, J.J.; Kfoury, A.G.; Starling, R.C.; Deng, M.C.; Cappola, T.P.; Kao, A.; Anderson, A.S.; Cotts, W.G.; Ewald, G.A.; et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N. Engl. J. Med. 2010, 362, 1890–1900, doi:10.1056/NEJMoa0912965.
[83]  Dudley, J.T.; Sirota, M.; Shenoy, M.; Pai, R.K.; Roedder, S.; Chiang, A.P.; Morgan, A.A.; Sarwal, M.M.; Pasricha, P.J.; Butte, A.J. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 2011, 3, 96ra76, doi:10.1126/scitranslmed.3002648.
[84]  Lussier, Y.A.; Chen, J.L. The emergence of genome-based drug repositioning. Sci. Transl. Med. 2011, 3, 96ps35, doi:10.1126/scitranslmed.3001512.
[85]  Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; D?evínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 2011, 365, 1663–1672, doi:10.1056/NEJMoa1105185.
[86]  Dormuth, C.R.; Hemmelgarn, B.R.; Paterson, J.M.; James, M.T.; Teare, G.F.; Raymond, C.B.; Lafrance, J.P.; Levy, A.; Garg, A.X.; Ernst, P.; et al. Use of high potency statins and rates of admission for acute kidney injury: Multicenter, retrospective observational analysis of administrative databases. Br. Med. J. 2013, 346, f880, doi:10.1136/bmj.f880.
[87]  Preiss, D.; Seshasai, S.R.; Welsh, P.; Murphy, S.A.; Ho, J.E.; Waters, D.D.; DeMicco, D.A.; Barter, P.; Cannon, C.P.; Sabatine, M.S.; et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: A meta-analysis. JAMA 2011, 305, 2556–2564, doi:10.1001/jama.2011.860.
[88]  Erogbogbo, F.; May, J.; Swihart, M.; Prasad, P.N.; Smart, K.; El-Jack, S.; Korcyk, D.; Webster, M.; Stewart, R.; Zeng, I.; et al. Bioengineering Silicon Quantum Dot Theranostics using a Network Analysis of Metabolomic and Proteomic Data in Cardiac Ischemia. Theranostics 2013. in press.
[89]  Winter, P.M.; Caruthers, S.D.; Zhang, H.; Williams, T.A.; Wickline, S.A.; Lanza, G.M. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. J. Am. Coll. Cardiol. Img. 2008, 1, 624–634, doi:10.1016/j.jcmg.2008.06.003.
[90]  Lillie, E.O.; Patay, B.; Diamant, J.; Issell, B.; Topol, E.J.; Schork, N.J. The n-of-1 clinical trial: The ultimate strategy for individualizing medicine? Pers. Med. 2011, 8, 161–173, doi:10.2217/pme.11.7.
[91]  Jani, I.V.; Peter, T.F. How point-of-care testing could drive innovation in global health. N. Engl. J. Med. 2013, 368, 2319–2324, doi:10.1056/NEJMsb1214197.
[92]  Weidenbach, M.; Wick, C.; Pieper, S.; Quast, K.J.; Fox, T.; Grunst, G.; Redel, D.A. Augmented reality simulator for training in two-dimensional echocardiography. Comput. Biomed. Res. 2000, 33, 11–22, doi:10.1006/cbmr.1999.1527.
[93]  Cornetta, K.; Brown, C.G. Balancing personalized medicine and personalized care. Acad. Med. 2013, 88, 309–313, doi:10.1097/ACM.0b013e3182806345.
[94]  Joshi, K.; Ghodke, Y.; Shintre, P. Traditional medicine and genomics. J. Ayurveda Integr. Med. 2010, 1, 26–32, doi:10.4103/0975-9476.59824.
[95]  Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, doi:10.1038/nm.3145.
[96]  de Chardin, P.T. The Phenomenon of Man; Harper & Row: New York, NY, USA, 1965.
[97]  Members, W.C.; Antman, E.M.; Anbe, D.T.; Armstrong, P.W.; Bates, E.R.; Green, L.A.; Hand, M.; Hochman, J.S.; Krumholz, H.M.; Kushner, F.G.; et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—Executive summary. Circulation 2004, 110, 588–636, doi:10.1161/01.CIR.0000134791.68010.FA.
[98]  Steg, P.G.; James, S.K.; Atar, D.; Badano, L.P.; Lundqvist, C.B.; Borger, M.A.; Di Mario, C.; Dickstein, K.; Ducrocq, G.; Fernandez-Aviles, F.; et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2012, 33, 2569–2619, doi:10.1093/eurheartj/ehs215.
[99]  Thygesen, K.; Alpert, J.S.; White, H.D.; Jaffe, A.S.; Apple, F.S.; Galvani, M.; Katus, H.A.; Newby, L.K.; Ravkilde, J.; Chaitman, B.; et al. Universal definition of myocardial infarction. Eur. Heart J. 2007, 28, 2525–2538, doi:10.1093/eurheartj/ehm355.
[100]  Herman, D.S.; Lam, L.; Taylor, M.R.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628, doi:10.1056/NEJMoa1110186.
[101]  Mitsuhashi, H.; Hayashi, Y.K.; Matsuda, C.; Noguchi, S.; Wakatsuki, S.; Araki, T.; Nishino, I. Specific phosphorylation of ser458 of a-type lamins in lmna-associated myopathy patients. J. Cell Sci. 2010, 123, 3893–3900, doi:10.1242/jcs.072157.
[102]  Zhavoronkov, A.; Smit-McBride, Z.; Guinan, K.J.; Litovchenko, M.; Moskalev, A. Potential therapeutic approaches for modulating expression and accumulation of defective lamin a in laminopathies and age-related diseases. J. Mol. Med. 2012, 90, 1361–1389, doi:10.1007/s00109-012-0962-4.
[103]  Liu, G.H.; Suzuki, K.; Qu, J.; Sancho-Martinez, I.; Yi, F.; Li, M.; Kumar, S.; Nivet, E.; Kim, J.; Soligalla, R.D.; et al. Targeted gene correction of laminopathy-associated lmna mutations in patient-specific ipscs. Cell Stem Cell 2011, 8, 688–694, doi:10.1016/j.stem.2011.04.019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133