The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information
Whole genome sequencing (WGS) is rapidly approaching widespread clinical application. Technology advancements over the past decade, since the first human genome was decoded, have made it feasible to use WGS for clinical care. Future advancements will likely drive down the price to the point wherein WGS is routinely available for care. However, were this to happen today, most of the genetic information available to guide clinical care would go unused due to the complexity of genetics, limited physician proficiency in genetics, and lack of genetics professionals in the clinical workforce. Furthermore, these limitations are unlikely to change in the future. As such, the use of clinical decision support (CDS) to guide genome-guided clinical decision-making is imperative. In this manuscript, we describe the barriers to widespread clinical application of WGS information, describe how CDS can be an important tool for overcoming these barriers, and provide clinical examples of how genome-enabled CDS can be used in the clinical setting.
References
[1]
Wetterstrand, K. DNA sequencing costs: Data from the NHGRI Genome Sequencing Program (GSP). Available online: http://www.genome.gov/sequencingcosts/ (accessed on 6 February 2013).
[2]
Bonetta, L. Whole-genome sequencing breaks the cost barrier. Cell 2010, 141, 917–919, doi:10.1016/j.cell.2010.05.034.
[3]
Rope, A.F.; Wang, K.; Evjenth, R.; Xing, J.; Johnston, J.J.; Swensen, J.J.; Johnson, W.E.; Moore, B.; Huff, C.D.; Bird, L.M.; et al. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am. J. Hum. Genet. 2011, 89, 28–43, doi:10.1016/j.ajhg.2011.05.017.
Lupski, J.R.; Reid, J.G.; Gonzaga-Jauregui, C.; Rio Deiros, D.; Chen, D.C.; Nazareth, L.; Bainbridge, M.; Dinh, H.; Jing, C.; Wheeler, D.A.; et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N. Engl. J. Med. 2010, 362, 1181–1191, doi:10.1056/NEJMoa0908094.
[6]
Talkowski, M.E.; Ordulu, Z.; Pillalamarri, V.; Benson, C.B.; Blumenthal, I.; Connolly, S.; Hanscom, C.; Hussain, N.; Pereira, S.; Picker, J.; et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. 2012, 367, 2226–2232, doi:10.1056/NEJMoa1208594.
[7]
Report of the President’s Council of Advisors on Science and Technology (PCAST). Priorities for Personalized Medicine. Available online: http://www.whitehouse.gov/files/documents/ostp/PCAST/ pcast_report_v2.pdf (accessed on 19 February 2013).
[8]
Abrahams, E.; Ginsburg, G.S.; Silver, M. The Personalized medicine coalition: Goals and strategies. Am. J. Pharmacogenomics 2005, 5, 345–355.
[9]
GeneTests Medical Genetics Information Resource (database online). Available online: http://www.genetests.org/ (accessed on 6 February 2013).
[10]
McGowan, K. Genomic Information Wants to Be Free, Says Randy Scott at PMWC. Available online: http://nygenome.org/blog/genomic-information-wants-be-free-says-randy-scott-pmwc/ (accessed on 8 February 2013).
[11]
Heart Rhythm UK Familial Sudden Death Syndromes Statement Development Group. Clinical indications for genetic testing in familial sudden cardiac death syndromes: An HRUK position statement. Heart 2008, 94, 502–507, doi:10.1136/hrt.2007.127761.
[12]
Carlson, B. Payers try new approaches to manage molecular diagnostics. Biotechnol. Healthc. 2010, 7, 26–30.
[13]
Weldon, C.B.; Trosman, J.R.; Gradishar, W.J.; Benson, A.B.; Schink, J.C. Barriers to the use of personalized medicine in breast cancer. J. Oncol. Pract. 2012, 8, e24–e31, doi:10.1200/JOP.2011.000448.
[14]
Welch, B.M.; Kawamoto, K. Clinical decision support for genetically guided personalized medicine: A systematic review. J. Am. Med. Inform. Assoc. 2012, 20, 388–400, doi:10.1136/amiajnl-2012-000892.
[15]
Bon Homme, M.; Reynolds, K.K.; Valdes, R., Jr.; Linder, M.W. Dynamic pharmacogenetic models in anticoagulation therapy. Clin. Lab. Med. 2008, 28, 539–552, doi:10.1016/j.cll.2008.10.002.
[16]
Glasspool, D.W.; Oettinger, A.; Braithwaite, D.; Fox, J. Interactive decision support for risk management: A qualitative evaluation in cancer genetic counselling sessions. J. Cancer Educ. 2010, 25, 312–316, doi:10.1007/s13187-009-0035-8.
[17]
Bell, G.C.; Crews, K.R.; Wilkinson, M.R.; Haidar, C.E.; Hicks, J.K.; Baker, D.K.; Kornegay, N.M.; Yang, W.; Cross, S.J.; Howard, S.C.; et al. Development and use of active clinical decision support for preemptive pharmacogenomics. J. Am. Med. Inform. Assoc. 2013, doi:10.1136/amiajnl-2013-001993.
[18]
Tarczy-Hornoch, P.; Amendola, L.; Aronson, S.J.; Garraway, L.; Gray, S.; Grundmeier, R.W.; Hindorff, L.A.; Jarvik, G.; Karavite, D.; Lebo, M.; et al. A survey of informatics approaches to whole-exome and whole-genome clinical reporting in the electronic health record. Genet. Med. 2013, 15, 824–832, doi:10.1038/gim.2013.120.
[19]
Kawamoto, K.; Lobach, D.F.; Willard, H.F.; Ginsburg, G.S. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine. BMC Med. Inform. Decis. Mak. 2009, 9, e17, doi:10.1186/1472-6947-9-17.
Green, R.C.; Rehm, H.L.; Kohane, I.S. Clinical genome sequencing. In Genomic and Personalized Medicine, 2nd ed. ed.; Academic Press: London, UK, 2013; pp. 102–122.
[22]
Richards, C.S.; Bale, S.; Bellissimo, D.B.; Das, S.; Grody, W.W.; Hegde, M.R.; Lyon, E.; Ward, B.E. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet. Med. 2008, 10, 294–300, doi:10.1097/GIM.0b013e31816b5cae.
[23]
Aronson, S.J.; Clark, E.H.; Varugheese, M.; Baxter, S.; Babb, L.J.; Rehm, H.L. Communicating new knowledge on previously reported genetic variants. Genet. Med. 2012, 14, 713–719, doi:10.1038/gim.2012.19.
[24]
Masys, D.R. Effects of current and future information technologies on the health care workforce. Health Aff. 2002, 21, 33–41, doi:10.1377/hlthaff.21.5.33.
[25]
West, M.; Ginsburg, G.S.; Huang, A.T.; Nevins, J.R. Embracing the complexity of genomic data for personalized medicine. Genome Res. 2006, 16, 559–566, doi:10.1101/gr.3851306.
[26]
Domchek, S.; Weber, B.L. Genetic variants of uncertain significance: Flies in the ointment. J. Clin. Oncol. 2008, 26, 16–17, doi:10.1200/JCO.2007.14.4154.
[27]
Jorde, L.B.; Carey, J.C.; Bamshad, M.J. Medical Genetics, 4th ed. ed.; Mosby: Maryland Heights, MO, USA, 2009; p. 368.
[28]
Scheuner, M.T.; Sieverding, P.; Shekelle, P.G. Delivery of genomic medicine for common chronic adult diseases: A systematic review. JAMA 2008, 299, 1320–1334, doi:10.1001/jama.299.11.1320.
[29]
Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001, 24, 87–114, doi:10.1017/S0140525X01003922.
[30]
Colon cancer gene variant databases. Adenomatous Polyposis Coli (APC). Available online: http://chromium.liacs.nl/LOVD2/colon_cancer/home.php?select_db=APC/ (accessed on 19 February 2013).
[31]
Cystic Fibrosis Mutation Database: Statistics. Available online: http://www.genet.sickkids.on.ca/StatisticsPage.html/ (accessed on 19 February 2013).
[32]
Shirts, B.H.; Parker, L.S. Changing interpretations, stable genes: Responsibilities of patients, professionals, and policy makers in the clinical interpretation of complex genetic information. Genet. Med. 2008, 10, 778–783, doi:10.1097/GIM.0b013e31818bb38f.
[33]
Balas, E.A.; Boren, S.A. Managing clinical knowledge for health care improvement. In Yearbook of Medical Informatics; Bemmel, J., McCray, A.T., Eds.; Patient-Centered Systems: Stuttgart, Germany, 2000; pp. 65–70.
[34]
Thurston, V.C.; Wales, P.S.; Bell, M.A.; Torbeck, L.; Brokaw, J.J. The current status of medical genetics instruction in US and Canadian medical schools. Acad. Med. 2007, 82, 441–445, doi:10.1097/ACM.0b013e31803e86c5.
[35]
Secretary’s Advisory Committee on Genetics, Health and Society (SACGHS). Genetics Education and Training of Health Care Professionals, Public Health Providers, and Consumers Service; SACGHS: Bethesda, MD, USA, 2010.
[36]
Collins, F.S.; Bochm, K. Avoiding casualties in the genetic revolution: The urgent need to educate physicians about genetics. Acad. Med. 1999, 74, 48–49.
[37]
Greb, A.E.; Brennan, S.; McParlane, L.; Page, R.; Bridge, P.D. Retention of medical genetics knowledge and skills by medical students. Genet. Med. 2009, 11, 365–370, doi:10.1097/GIM.0b013e31819c6b2d.
[38]
McInerney, J.D.; Edelman, E.; Nissen, T.; Reed, K.; Scott, J.A. Preparing health professionals for individualized medicine. Pers. Med. 2012, 9, 529–537, doi:10.2217/pme.12.46.
[39]
McInerney, J.D. Genetics education for health professionals: A context. J. Genet. Couns. 2008, 17, 145–151, doi:10.1007/s10897-007-9126-z.
[40]
Hunter, A.; Wright, P.; Cappelli, M.; Kasaboski, A.; Surh, L. Physician knowledge and attitudes towards molecular genetic (DNA) testing of their patients. Clin. Genet. 1998, 53, 447–455.
[41]
Haga, S.B.; Burke, W.; Ginsburg, G.S.; Mills, R.; Agans, R. Primary care physicians’ knowledge of and experience with pharmacogenetic testing. Clin. Genet. 2012, 82, 388–394, doi:10.1111/j.1399-0004.2012.01908.x.
[42]
Edwards, Q.T.; Maradiegue, A.; Seibert, D.; Saunders-Goldson, S.; Humphreys, S. Breast cancer risk elements and nurse practitioners’ knowledge, use, and perceived comfort level of breast cancer risk assessment. J. Am. Acad. Nurse Pract. 2009, 21, 270–277, doi:10.1111/j.1745-7599.2009.00405.x.
[43]
Bethea, J.; Qureshi, N.; Drury, N.; Guilbert, P. The impact of genetic outreach education and support to primary care on practitioner’s confidence and competence in dealing with familial cancers. Community Genet. 2008, 11, 289–294, doi:10.1159/000121400.
[44]
Clyman, J.C.; Nazir, F.; Tarolli, S.; Black, E.; Lombardi, R.Q.; Higgins, J.J. The impact of a genetics education program on physicians’ knowledge and genetic counseling referral patterns. Med. Teach. 2007, 29, e143–e150, doi:10.1080/01421590701477373.
[45]
American Board of Medical Specialties. ABMS Guide to Physician Specialties; Elsevier: Maryland Heights, MO, USA, 2013; p. 44.
[46]
National Society of Genetic Counselors (NSGC). Making Sense of Your Genes: A Guide to Genetic Counseling; NSGC: Chicago, IL, USA, 2008; pp. 1–21.
[47]
American Board of Genetic Counseling Inc. about ABGC. Available online: http://www.abgc.net/About_ABGC/GeneticCounselors.asp/ (accessed on 6 February 2013).
[48]
National Society of Genetic Counselors (NSGC). 2012 Professional Status Survey: Executive Summary; NSGC: Chicago, IL, USA, 2012; pp. 1–15.
The Physician Workforce: Projections and Research into Current Issues Affecting Supply and Demand. Available online: http://bhpr.hrsa.gov/healthworkforce/reports/physwfissues.pdf (accessed on 15 February 2013).
[51]
Cooksey, J.A.; Forte, G.; Benkendorf, J.; Blitzer, M.G. The state of the medical geneticist workforce: Findings of the 2003 survey of American Board of Medical Genetics certified geneticists. Genet. Med. 2005, 7, 439–443, doi:10.1097/01.GIM.0000172416.35285.9F.
[52]
Collins, F.S. Faith and the human genome. Perspect. Sci. Christian Faith 2003, 55, 142–153.
[53]
Belmont, J.; McGuire, A.L. The futility of genomic counseling: Essential role of electronic health records. Genome Med. 2009, 1, e48, doi:10.1186/gm48.
[54]
Ullman-Cullere, M.H.; Mathew, J.P. Emerging landscape of genomics in the electronic health record for personalized medicine. Hum. Mutat. 2011, 32, 512–516, doi:10.1002/humu.21456.
[55]
Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009, 154, 277–287, doi:10.1016/j.trsl.2009.09.005.
Kullo, I.J.; Jarvik, G.P.; Manolio, T.A.; Williams, M.S.; Roden, D.M. Leveraging the electronic health record to implement genomic medicine. Genet. Med. 2013, 15, 270–271, doi:10.1038/gim.2012.131.
[58]
Osheroff, J.A.; Teich, J.M.; Middleton, B.; Steen, E.B.; Wright, A.; Detmer, D.E. A roadmap for national action on clinical decision support. J. Am. Med. Inform. Assoc. 2007, 14, 141–145, doi:10.1197/jamia.M2334.
[59]
Wright, A.; Sittig, D.F.; Ash, J.S.; Feblowitz, J.; Meltzer, S.; McMullen, C.; Guappone, K.; Carpenter, J.; Richardson, J.; Simonaitis, L.; et al. Development and evaluation of a comprehensive clinical decision support taxonomy: Comparison of front-end tools in commercial and internally developed electronic health record systems. J. Am. Med. Inform. Assoc. 2011, 18, 232–242, doi:10.1136/amiajnl-2011-000113.
[60]
Bright, T.J.; Wong, A.; Dhurjati, R.; Bristow, E.; Bastian, L.; Coeytaux, R.R.; Samsa, G.; Hasselblad, V.; Williams, J.W.; Musty, M.D.; et al. Effect of clinical decision-support systems: A systematic review. Ann. Intern. Med. 2012, 157, 29–43, doi:10.7326/0003-4819-157-1-201207030-00450.
[61]
Jaspers, M.W.; Smeulers, M.; Vermeulen, H.; Peute, L.W. Effects of clinical decision-support systems on practitioner performance and patient outcomes: A synthesis of high-quality systematic review findings. J. Am. Med. Inform. Assoc. 2011, 18, 327–334, doi:10.1136/amiajnl-2011-000094.
[62]
Chaudhry, B.; Wang, J.; Wu, S.; Maglione, M.; Mojica, W.; Roth, E.; Morton, S.C.; Shekelle, P.G. Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 2006, 144, 742–752, doi:10.7326/0003-4819-144-10-200605160-00125.
[63]
Mitchell, J.A.; Gerdin, U.; Lindberg, D.; Lovis, C.; Martin-Sanchez, F.J.; Miller, R.A.; Shortliffe, E.H.; Leong, T.-Y. 50 Years of informatics research on decision support: What’s next. Methods Inf. Med. 2011, 50, 525–535, doi:10.3414/ME11-06-0004.
[64]
What is Meaningful Use? | Policy Researchers & Implementers | HealthIT.gov. Available online: http://www.healthit.gov/policy-researchers-implementers/meaningful-use (accessed on 8 November 2013).
[65]
Hunt, D.L.; Haynes, R.B.; Hanna, S.E.; Smith, K. Effects of computer-based clinical decision support systems on physician performance and patient outcomes: A systematic review. JAMA 1998, 280, 1339–1346, doi:10.1001/jama.280.15.1339.
[66]
Bates, D.; Kuperman, G. Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 2003, 10, 523–530, doi:10.1197/jamia.M1370.
[67]
Kawamoto, K.; Houlihan, C.A.; Balas, E.A.; Lobach, D.F. Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success. Br. Med. J. 2005, 330, e765, doi:10.1136/bmj.38398.500764.8F.
[68]
Emery, J.; Morris, H.; Goodchild, R.; Fanshawe, T.; Prevost, A.T.; Bobrow, M.; Kinmonth, A.L. The GRAIDS trial: A cluster randomised controlled trial of computer decision support for the management of familial cancer risk in primary care. Br. J. Cancer 2007, 97, 486–493, doi:10.1038/sj.bjc.6603897.
[69]
Collins, F.S. A Brief Primer on Genetic Testing. Available online: http://www.genome.gov/10506784/ (accessed on 8 February 2013).
[70]
NIH Office of Rare Diseases Research (ORDR). Undiagnosed Diseases Program. Available online: http://rarediseases.info.nih.gov/Resources.aspx?PageID=31/ (accessed on 20 February 2013).
[71]
Cirulli, E.T.; Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 2010, 11, 415–425.
[72]
Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755.
[73]
Berg, J.S.; Khoury, M.J.; Evans, J.P. Deploying whole genome sequencing in clinical practice and public health: Meeting the challenge one bin at a time. Genet. Med. 2011, 13, 499–504.
[74]
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD, USA), Online Mendelian Inheritance in Man, OMIM?. Available online: http://omim.org/ (accessed on 8 February 2013).
[75]
Genetics Home Reference Waardenburg syndrome. Available online: http://ghr.nlm.nih.gov/condition/waardenburg-syndrome/ (accessed on 20 February 2013).
Drohan, B.; Roche, C.A.; Cusack, J.C.; Hughes, K.S. Hereditary breast and ovarian cancer and other hereditary syndromes: Using technology to identify carriers. Ann. Surg. Oncol. 2012, 19, 1732–1737.
[78]
Schwartz, M.D.; Valdimarsdottir, H.B.; DeMarco, T.A.; Peshkin, B.N.; Lawrence, W.; Rispoli, J.; Brown, K.; Isaacs, C.; O’Neill, S.; Shelby, R.; et al. Randomized trial of a decision aid for BRCA1/BRCA2 mutation carriers: Impact on measures of decision making and satisfaction. Health Psychol. 2009, 28, 11–19.
[79]
Glasspool, D.W.; Oettinger, A.; Smith-Spark, J.H.; Castillo, F.C.; Monaghan, V.E.L.; Fox, J. Supporting medical planning by mitigating cognitive load. Methods Inf. Med. 2007, 46, 636–640.
[80]
Reference, G.H. Cystic fibrosis. Available online: http://ghr.nlm.nih.gov/condition/cystic-fibrosis/ (accessed on 20 February 2013).
[81]
Srinivasan, B.S.; Evans, E.A.; Flannick, J.; Patterson, A.S.; Chang, C.C.; Pham, T.; Young, S.; Kaushal, A.; Lee, J.; Jacobson, J.L.; et al. A universal carrier test for the long tail of Mendelian disease. Reprod. Biomed. Online 2010, 21, 537–551.
[82]
Aithal, G.P.; Day, C.P.; Kesteven, P.J.L.; Daly, A.K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Early Rep. 1999, 353, 717–719.
[83]
Secretary’s Advisory Committee on Genetics, Health and Society (SACGHS). Realizing the Potential of Pharmacogenomics: Opportunities and Challenges; SACGHS: Bethesda, MD, USA, 2008.
[84]
Gage, B.; Eby, C.; Johnson, J. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 2008, 84, 326–331.
[85]
Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers, K.; Johnson, K.; et al. Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 2012, 92, 87–95.
[86]
Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250.
[87]
Brody, L.C.; Conley, M.; Cox, C.; Kirke, P.N.; McKeever, M.P.; Mills, J.L.; Molloy, A.M.; O’Leary, V.B.; Parle-McDermott, A.; Scott, J.M.; et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: Report of the Birth Defects Res. Am. J. Hum. Genet. 2002, 71, 1207–1215, doi:10.1086/344213.
[88]
Masys, D.R.; Jarvik, G.P.; Abernethy, N.F.; Anderson, N.R.; Papanicolaou, G.J.; Paltoo, D.N.; Hoffman, M.A.; Kohane, I.S.; Levy, H.P. Technical desiderata for the integration of genomic data into Electronic Health Records. J. Biomed. Inform. 2012, 45, 419–422, doi:10.1016/j.jbi.2011.12.005.
[89]
Hoffman, M.A. The genome-enabled electronic medical record. J. Biomed. Inform. 2007, 40, 44–46, doi:10.1016/j.jbi.2006.02.010.
[90]
Gottesman, O.; Kuivaniemi, H.; Tromp, G.; Faucett, W.A.; Li, R.; Manolio, T.A.; Sanderson, S.C.; Kannry, J.; Zinberg, R.; Basford, M.A.; et al. The Electronic Medical Records and Genomics (eMERGE) Network: Past, present, and future. Genet. Med. 2013, 15, 761–771, doi:10.1038/gim.2013.72.
[91]
McCarty, C.A.; Chisholm, R.L.; Chute, C.G.; Kullo, I.J.; Jarvik, G.P.; Larson, E.B.; Li, R.; Masys, D.R.; Ritchie, M.D.; Roden, D.M.; et al. The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med. Genomics 2011, 4, e13, doi:10.1186/1755-8794-4-13.
[92]
National Center for Biotechnology Information ClinVar. Available online: http://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 8 February 2013).
[93]
New NIH-Funded Resource Focuses on Use of Genomic Variants in Medical Care. Available online: http://www.nih.gov/news/health/sep2013/nhgri-25.htm (accessed on 8 October 2013).
[94]
Drohan, B.; Ozanne, E.M.M.; Hughes, K.S.S. Electronic health records and the management of women at high risk of hereditary breast and ovarian cancer. Breast J. 2009, 15, S46–S55, doi:10.1111/j.1524-4741.2009.00796.x.
[95]
Kawamoto, K.; Lobach, D. Proposal for fulfilling strategic objectives of the US roadmap for national action on decision support through a service-oriented architecture leveraging HL7 services. J. Am. Med. Inform. Assoc. 2007, 14, 146–155, doi:10.1197/jamia.M2298.
[96]
Standards & Interoperability (S&I) Framework—Health eDecisions Homepage. Available online: http://wiki.siframework.org/Health+eDecisions+Homepage/ (accessed on 8 November 2013).
[97]
Kawamoto, K.; Del Fiol, G.; Orton, C.; Lobach, D.F. System-agnostic clinical decision support services: Benefits and challenges for scalable decision support. Open Med. Inform. J. 2010, 4, 245–254, doi:10.2174/1874431101004010245.