Ten years after completion of the Human Genome Project, progress towards making “personalized medicine” a reality has been slower than expected. The reason is twofold. Firstly, the science is more difficult than expected. Secondly, limited progress has been made in aligning economic incentives to invest in diagnostics. This paper develops nine case studies of “success” where diagnostic tests are bringing personalized medicine into clinical practice with health and economic impact for patients, healthcare systems, and manufacturers. We focus on the availability of evidence for clinical utility, which is important not only for clinicians but also for payers and budget holders. We find that demonstrating diagnostic clinical utility and the development of economic evidence is currently feasible (i) through drug-diagnostic co-development, and (ii) when the research is sponsored by payers and public bodies. It is less clear whether the diagnostic industry can routinely undertake the work necessary to provide evidence as to the clinical utility and economic value of its products. It would be good public policy to increase the economic incentives to produce evidence of clinical utility: otherwise, opportunities to generate value from personalized medicine—in terms of both cost savings and health gains—may be lost.
References
[1]
Pollack, A. Awaiting the genome payoff. The New York Times, 14 June 2010. Available online: http://www.nytimes.com/2010/06/15/business/15genome.html?pagewanted=all&_r=0 (accessed on 22 October 2013).
[2]
Garrison, L.P.; Austin, M.J.F. Linking pharmacogenetics-based diagnostics and pharmaceuticals for personalized medicine: Scientific and economic challenges. Health Aff. 2006, 25, 1281–1290, doi:10.1377/hlthaff.25.5.1281.
[3]
Reis-Filho, J.S.; Pusztai, L. Gene expression profiling in BrCa. Lancet 2011, 378, 1812–1823, doi:10.1016/S0140-6736(11)61539-0.
[4]
Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A multigene assay to predict recurrence of tamoxifen treated node-negative breast cancer. N. Engl. J. Med. 2004, 351, 2817–2826, doi:10.1056/NEJMoa041588.
[5]
Paik, S.; Tang, G.; Shak, S.; Kim, C.; Baker, J.; Kim, W.; Cronin, M.; Baehner, F.L.; Watson, D.; Bryant, J.; et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 2006, 24, 3726–3734, doi:10.1200/JCO.2005.04.7985.
[6]
Mamounas, E.P.; Tang, G.; Fisher, B.; Paik, S.; Shak, S.; Costantino, J.P.; Watson, D.; Geyer, C.E., Jr.; Wickerham, D.L.; Wolmark, N. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: Results from NSABP B-14 and NSABP B-20. J. Clin. Oncol. 2010, 28, 1677–1683, doi:10.1200/JCO.2009.23.7610.
[7]
National Cancer Institute (NCI). Hormone therapy with or without combination chemotherapy in treating women who have undergone surgery for node-negative breast cancer (The TAILORx Trial). Available online: http://www.clinicaltrials.gov/ct2/results?term=nct00310180 (accessed on 22 October 2013).
[8]
USA Food and Drug Administration (FDA). FDA Clears Breast Cancer Specific Molecular Prognostic Test. FDA News Release, 6 February 2007. Available online: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108836.htm (accessed on 22 October 2013).
[9]
Van’t Veer, L.J.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536, doi:10.1038/415530a.
[10]
van de Vijver, M.J.; He, Y.D.; van’t Veer, L.J.; Dai, H.; Hart, A.A.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.; Roberts, C.; Marton, M.J.; et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002, 347, 1999–2009, doi:10.1056/NEJMoa021967.
[11]
Buyse, M.; Loi, S.; van’t Veer, L.; Viale, G.; Delorenzi, M.; Glas, A.M.; d’Assignies, M.S.; Bergh, J.; Lidereau, R.; Ellis, P.; et al. TRANSBIG Consortium. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl. Cancer Inst. 2006, 98, 1183–1192, doi:10.1093/jnci/djj329.
[12]
Bueno-de-Mesquita, J.M.; Linn, S.C.; Keijzer, R.; Wesseling, J.; Nuyten, D.S.; van Krimpen, C.; Meijers, C.; de Graaf, P.W.; Bos, M.M.; Hart, A.A.; et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res. Treat. 2009, 117, 483–495, doi:10.1007/s10549-008-0191-2.
[13]
Mook, S.; Schmidt, M.K.; Viale, G.; Pruneri, G.; Eekhout, I.; Floore, A.; Glas, A.M.; Bogaerts, J.; Cardoso, F.; Piccart-Gebhart, M.J.; et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res. Treat. 2009, 116, 295–302, doi:10.1007/s10549-008-0130-2.
[14]
European Organisation for Research and Treatment of Cancer. Genetic testing or clinical assessment in determining the need for chemotherapy in women with breast cancer that involves no more than 3 lymph nodes. Available online: http://www.clinicaltrials.gov/ct2/show/NCT00433589 (accessed on 22 October 2013).
[15]
Knauer, M.; Cardoso, F.; Wesseling, J.; Bedard, P.L.; Linn, S.C.; Rutgers, E.J.; van’t Veer, L.J. Identification of a low-risk subgroup of HER-2-positive breast cancer by the 70-gene prognosis signature. Br. J. Cancer 2010, 103, 1788–1793, doi:10.1038/sj.bjc.6605916.
[16]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792, doi:10.1056/NEJM200103153441101.
[17]
Paik, S.; Bryant, J.; Tan-Chiu, E.; Romond, E.; Hiller, W.; Park, K.; Brown, A.; Yothers, G.; Anderson, S.; Smith, R.; et al. Real-world performance of HER2 testing―National Surgical Adjuvant Breast and Bowel Project experience. J. Natl. Cancer Inst. 2002, 94, 852–854, doi:10.1093/jnci/94.11.852.
[18]
Wolff, A.C.; Hammond, M.E.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; Dowsett, M.; Fitzgibbons, P.L.; Hanna, W.M.; Langer, A.; et al. American Society of Clinical Oncology/ College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol. 2007, 25, 118–145.
[19]
Romond, E.H.; Perez, E.A.; Bryant, J.; Suman, V.J.; Geyer, C.E., Jr.; Davidson, N.E.; Tan-Chiu, E.; Martino, S.; Paik, S.; Kaufman, P.A.; et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1673–1684, doi:10.1056/NEJMoa052122.
[20]
Garcia, M.J.A.; Ward, E.M.; Center, M.M.; Hao, Y.; Siegel, R.L.; Thun, M.J. Global Cancer Facts and Figures 2007; American Cancer Society: Atlanta, GA, USA, 2007. Available online: http://www.cancer.org/acs/groups/content/@nho/documents/document/globalfactsandfigures2007rev2p.pdf (accessed on 22 October 2013).
[21]
National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer version 1. Available online: http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 22 October 2013).
[22]
Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A., Jr.; Franklin, W.A.; Dziadziuszko, R.; Thatcher, N.; Chang, A.; Parikh, P.; Pereira, J.R.; Ciuleanu, T.; et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol. 2006, 24, 5034–5042, doi:10.1200/JCO.2006.06.3958.
[23]
Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 2005, 353, 123–132, doi:10.1056/NEJMoa050753.
[24]
Pao, W.; Miller, V.A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: Current knowledge and future directions. J. Clin. Oncol. 2005, 23, 2556–2568, doi:10.1200/JCO.2005.07.799.
[25]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957, doi:10.1056/NEJMoa0810699.
[26]
Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, Phase 3 study. Lancet Oncol. 2011, 12, 735–742, doi:10.1016/S1470-2045(11)70184-X.
[27]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised Phase 3 trial. Lancet Oncol. 2012, 13, 239–246, doi:10.1016/S1470-2045(11)70393-X.
[28]
Boehringer Ingelheim. Afatinib demonstrates significant progression-free survival of almost one year in EGFR mutation-positive advanced NSCLC. Available online: http://us.boehringer-ingelheim.com/news_events/press_releases/press_release_archive/2012/june_4_2012.html (accessed on 22 October 2013).
[29]
Martinelli, E.; de Palma, R.; Orditura, M.; de Vita, F.; Ciardiello, F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol. 2009, 158, 1–9.
[30]
Amado, R.G.; Wolf, M.; Peeters, M.; van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 1626–1634, doi:10.1200/JCO.2007.14.7116.
[31]
Jonker, D.J.; O’Callaghan, C.J.; Karapetis, C.S.; Zalcberg, J.R.; Tu, D.; Au, H.J.; Berry, S.R.; Krahn, M.; Price, T.; Simes, R.J.; et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med. 2007, 357, 2040–2048, doi:10.1056/NEJMoa071834.
[32]
Tabin, C.J.; Bradley, S.M.; Bargmann, C.I.; Weinberg, R.A.; Papageorge, A.G.; Scolnick, E.M.; Dhar, R.; Lowy, D.R.; Chang, E.H. Mechanism of activation of a human oncogene. Nature 1982, 300, 143–149, doi:10.1038/300143a0.
[33]
Egan, S.E.; Giddings, B.W.; Brooks, M.W.; Buday, L.; Sizeland, A.M.; Weinberg, R.A. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993, 363, 45–51, doi:10.1038/363045a0.
[34]
Rozakis-Adcock, M.; Fernley, R.; Wade, J.; Pawson, T.; Bowtell, D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 1993, 363, 83–85, doi:10.1038/363083a0.
[35]
Rojas, M.; Yao, S.; Lin, Y.Z. Controlling epidermal growth factor (EGF)-stimulated Ras activation in intact cells by a cell-permeable peptide mimicking phosphorylated EGF receptor. J. Biol. Chem. 1996, 271, 27456–27461.
[36]
Van Cutsem, E.; Peeters, M.; Siena, S.; Humblet, Y.; Hendlisz, A.; Neyns, B.; Canon, J.L.; Van Laethem, J.L.; Maurel, J.; Richardson, G.; et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. 2007, 25, 1658–1664, doi:10.1200/JCO.2006.08.1620.
[37]
Van Cutsem, E.L.I.; D’haens, G. KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (metastatic CRC) treated with FOLFIRI with or without cetuximab: The Crystal experience. J. Clin. Oncol. 2008, 26, 52.
[38]
Van Cutsem, E.; Nowacki, M.; Lang, I.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Rougier, P.; Cunningham, D.; Nippgen, J.; K?hne, C. Randomized phase III study of irinotecan and 5-FU/FA with or without cetuximab in the first-line treatment of patients with metastatic colorectal cancer (mCRC): The Crystal trial (Meeting Abstracts). J. Clin. Oncol. 2007, 25, 18.
[39]
Van Cutsem, E.; K?hne, C.H.; Hitre, E.; Zaluski, J.; Chang Chien, C.R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 2009, 360, 1408–1417, doi:10.1056/NEJMoa0805019.
[40]
USA Food and Drug Administration (FDA). FDA Label for Cetuximab and FDA Approval Letter for Cetuximab. 2009. Available online: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm113714.htm (accessed on 22 October 2013).
[41]
National Comprehensive Cancer Network. NCCN Guidelines. Chronic Myelogenous Leukemia version 1. Available online: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp (accessed on 22 October 2013).
[42]
O’Brien, S.G.; Guilhot, F.; Larson, R.A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J.J.; Fischer, T.; Hochhaus, A.; Hughes, T.; et al. Imatinab compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 2003, 348, 994–1004, doi:10.1056/NEJMoa022457.
[43]
Cortes, J.E.; Talpaz, M.; Kantarjian, H. Chronic myelogenous leukemia. A review. Am. J. Med. 1996, 100, 555–570.
[44]
Cancer Research UK. Treating Chronic Myeloid Leukemia (CML)―A quick guide. 2011. Available online: http://www.cancerresearchuk.org/prod_consump/groups/cr_common/@cah/@gen/documents/generalcontent/treating-cml.pdf (accessed on 22 October 2013).
[45]
Baccarani, M.; Pane, F.; Saglio, G. Monitoring treatment of chronic myeloid leukemia. Haematologica 2008, 93, 161–166.
[46]
Hughes, T.P.; Branford, S. Measuring minimal residual disease in chronic myeloid leukemia: Fluorescence in situ hybridization and polymerase chain reaction. Clin. Lymphoma Myeloma 2009, 9, S266–S271, doi:10.3816/CLM.2009.s.022.
[47]
Gabert, J.; Beillard, E.; van der Velden, V.H.; Grimade, D.; Paillisgaard, N.; Barbary, G. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia―A Europe Against Cancer program. Leukemia 2003, 17, 2318–2357.
[48]
Branford, S.; Fletcher, L.; Cross, N.C.; Müller, M.C.; Hochhaus, A.; Kim, D.W. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 2008, 112, 3330–3338.
[49]
Zhang, T.; Grenier, S.; Nwachukwu, B.; Wei, C.; Lipton, J.H.; Kamel-Reid, S. Inter-laboratory comparison of chronic myeloid leukemia minimal residual disease monitoring: Summary and recommendations. J. Mol. Diagn. 2007, 9, 421–430, doi:10.2353/jmoldx.2007.060134.
[50]
Müller, M.C.; Erben, P.; Saglio, G.; Gottardi, E.; Nyvold, C.G.; Schenk, T. Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories. Leukemia 2008, 22, 96–102.
[51]
Ratcliffe, A.; Ratcliffe, M.; O’hanlon, H.; Hegarty, L.; Ossa, D. The Economic and Efficiency Gains Associated with the Use of a Standardised, Automated BCR-ABL Monitoring Test (SBAT): Results from a Budget Impact Analysis for the USA. In Proceedings of ISPOR 14th Annual European Congress, Madrid, Spain, 5–8 November 2011.
[52]
Mega, J.L.; Close, S.L.; Wiviott, S.D.; Shen, L.; Hockett, R.D.; Brandt, J.T.; Walker, J.R.; Antman, E.M.; Macias, W.; Braunwald, E.; et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 2009, 360, 354–362.
[53]
Mega, J.L.; Simon, T.; Collet, J.P.; Anderson, J.L.; Antman, E.M.; Bliden, K. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: A meta-analysis. JAMA 2010, 304, 1821–1830.
[54]
USA Food and Drug Administration (FDA). FDA announces new boxed warning on Plavix. FDA NEWS RELEASE, 12 March 2010. Available online: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm204253.htm (accessed on 22 October 2013).
[55]
Mega, J.L.; Close, S.L.; Wiviott, S.D.; Shen, L.; Hockett, R.D.; Brandt, J.T.; Walker, J.R.; Antman, E.M.; Macias, W.L.; Braunwald, E.; et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: Relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 2009, 119, 2553–2560.
Clinical trial NCT00995514 (terminated). Available online: http://clinicaltrials.gov/show/NCT00995514 (accessed on 22 October 2013).
[58]
Roberts, J.D.; Wells, G.A.; May, M.R.L.E.; Labinaz, M.; Glover, C.; Froeschl, M.; Dick, A. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): A prospective-randomised, proof-of-concept trial. Lancet 2012, 379, 1705–1711.
[59]
Hughes, A.R.; Spreen, W.R.; Mosteller, M.; Warren, L.L.; Lai, E.H.; Brothers, C.H. Pharmacogenetics of hypersensitivity to abacavir: From PGx hypothesis to confirmation to clinical utility. Pharmacogenomics J. 2008, 8, 365–374.
[60]
Caliendo, A.M.; Valsamakis, A.; Zhou, Y.; Yen-Lieberman, B.; Andersen, J.; Young, S.; Ferreira-Gonzalez, A.; Tsongalis, G.J.; Pyles, R.; Bremer, J.W.; et al. Multilaboratory comparison of hepatitis C virus load assays. J. Clin. Microbiol. 2006, 44, 1726–1732.
[61]
Davis, G.L.; Wong, J.B.; McHutchinson, J.G.; Mannas, M.P.; Harvey, J.; Albrecht, J. Early virologic response to treatment with Peginterferon Alfa-2b plus Ribavirin in patients with chronic Hepatitis C. Hepatology 2003, 38, 645–652.
[62]
Berg, T.; Sarrazin, C.; Herrmann, E.; Hinrichsen, H.; Gerlach, T.; Zachoval, R.; Wiedenmann, B.; Hopf, U.; Zeuzem, S. Prediction of treatment outcome in patients with chronic Hepatitis C: Significance of baseline parameters and viral dynamics during therapy. Hepatology 2003, 37, 600–609, doi:10.1053/jhep.2003.50106.
[63]
Lebovitz, H.E. Type 2 diabetes: An overview. Clin. Chem. 1999, 45, 1339–1345.
[64]
Schmidt, M.I.; Duncan, B.B.; Bang, H.; Pankow, J.S.; Ballantyne, C.M.; Golden, S.H.; Folsom, A.R.; Chambless, L.E. Identifying individuals at high risk for diabetes: The atherosclerosis risk in communities study. Diabetes Care 2005, 28, 2013–2018, doi:10.2337/diacare.28.8.2013.
[65]
Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.; D’Agostino, R.B., Sr.; et al. Genotype score in addition to common risk factors for prediction of Type 2 diabetes. N. Engl. J. Med. 2008, 359, 2208–2219.
[66]
Tethys. Diabetes Risk Scores. 2008. Available online: http://www.tethysbio.com/news/archive/tethys (accessed on 22 October 2013).
[67]
Kolberg, J.A.; J?rgensen, T.; Gerwien, R.W.; Hamren, S.; McKenna, M.P.; Moler, E.; Rowe, M.W.; Urdea, M.S.; Xu, X.M.; Hansen, T.; et al. Development of a Type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 2009, 32, 1207–1212.
[68]
Urdea, M.; Kolberg, J.; Wilber, J.; Gerwien, R.; Moler, E.; Rowe, M.; Jorgensen, P.; Hansen, T.; Pedersen, O.; J?rgensen, T.; et al. Validation of a multimarker model for assessing risk of Type 2 diabetes from a five-year prospective study of 6784 Danish people (Inter99). J. Diabetes Sci. Technol. 2009, 3, 748–755.
[69]
Albain, K.S.; Barlow, W.E.; Shak, S.; Hortobagyi, G.N.; Livingston, R.B.; Yeh, I.T.; Ravdin, P.; Bugarini, R.; Baehner, F.L.; Davidson, N.E.; et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: A retrospective analysis of a randomised trial. Lancet Oncol. 2010, 11, 55–65.
[70]
National Institute for Health (NICE). NICE TA34: Breast cancer—Trastuzumab: Guidance (2002). Available online: http://www.nice.org.uk/nicemedia/live/11445/32313/32313.pdf (accessed on 22 October 2013).
[71]
National Institute for Health (NICE). NICE TA70: Leukaemia (chronic myeloid)―Imatinib (TA70)(2003). Available online: http://www.nice.org.uk/nicemedia/live/11516/32754/32754.pdf (accessed on 22 October 2013).
[72]
National Institute for Health (NICE). NICE TA192: Lung cancer (non-small-cell, first line)― Gefitinib (2010). Available online: http://www.nice.org.uk/nicemedia/live/13058/49880/49880.pdf (accessed on 22 October 2013).
[73]
National Institute for Health (NICE). NICE DG10: Gene expression profiling and expanded immunohistochemistry tests for guiding adjuvant chemotherapy decisions in early breast cancer management: MammaPrint, Oncotype DX, IHC4 and Mammostrat (2013). Available online: http://www.nice.org.uk/nicemedia/live/14279/65265/65265.pdf (accessed on 22 October 2013).
[74]
Ashford, M. CardioDx hopeful palmetto coverage decision for corus cad test will encourage physician adoption. 2012. Available online: http://www.genomeweb.com//node/1116301?hq_e=el (accessed on 22 October 2013).