全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Measurement of Diurnal Body Tilt Angle Distributions of Threeline Grunt Parapristipoma trilineatum Using Micro-Acceleration Data Loggers

DOI: 10.3390/jmse1010003

Keywords: body tilt angle, data loggers, bio-logging, fish behaviour, fisheries acoustics, fish abundance, target strength, threeline grunt, Parapristipoma trilineatum

Full-Text   Cite this paper   Add to My Lib

Abstract:

The body tilt angle of a fish has a large effect on the acoustic target strength. For an accurate estimation of fish abundance using acoustic methods, it is necessary to measure body tilt angles in free-ranging fish. We measured diurnal body tilt angle distributions of threeline grunt ( Parapristipoma trilineatum) while swimming in schools in a fish cage. Micro-acceleration data loggers were used to record (for 3 days) swaying and surging accelerations (at 16 Hz intervals) of 10 individuals among 20 forming a school in a fish cage. Time series analysis of 1-h mean body tilt angles revealed significant differences in body tilt angles between day (?7.9 ± 3.28°) and night (0.8 ± 5.89°), which must be taken into account when conducting acoustic surveys. These results will be useful for calculating the average dorsal aspect target strength (TS) of threeline grunt for accurate estimations of fish abundance.

References

[1]  Johanneson, K.A.; Mitson, R.B. A practical manual for aquatic biomass estimation. FAO Fish. Tech. Pap. 1983, 240, 1–249.
[2]  Nakken, O.; Olsen, K. Target-strength measurements of fish. Rapp. P.-v. Réun. Cons. Int. Explor. Mer. 1977, 170, 53–69.
[3]  Foote, K.G. Linearity of fisheries acoustics, with addition theorems. J. Acoust. Soc. Am. 1983, 73, 1932–1940, doi:10.1121/1.389583.
[4]  Foote, K.G.; Ona, E. Tilt angles of schooling penned saithe. ICES Counc. Meet. Pap. 1985, 29, 1–6.
[5]  Hazen, E.L.; Horne, J.K. Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES J. Mar. Sci. 2004, 61, 363–377, doi:10.1016/j.icesjms.2004.01.005.
[6]  Kooyman, G.L. Genesis and Evolution of Bio-logging Devices: 1963–2002. In Bio-Logging Science; Naito, Y., Ed.; National Institute of Polar Research Press: Tokyo, Japan, 2004; Volume 58, pp. 15–22.
[7]  Tanaka, H.; Takagi, Y.; Naito, Y. Swimming speeds and buoyancy compensation of migrating adult chum salmon Oncorhynchus keta revealed by speed/depth/acceleration data logger. J. Exp. Biol. 2001, 204, 3895–3904.
[8]  Alabsi, N.M.; Tanoue, H.; Komatsu, T.; Charef, A.; Mitani, I.; Kato, M.; Horii, T.; Aoki, I.; Miyazaki, N. Measurement of the Swimming behavior of a deep-water fish, the splendid alfonsino (beryx splendens), in captivity using micro data loggers. J. Fish. Aquat. Sci. 2011, 6, 309–321, doi:10.3923/jfas.2011.309.321.
[9]  Tanoue, H.; Komatsu, T.; Tsujino, T.; Suzuki, I.; Watanabe, M.; Goto, H.; Miyazaki, N. Feeding events of Japanese lates Lates japonicus detected by a high-speed video camera and three-axis micro-acceleration data-logger. Fish. Sci. 2012, 78, 533–538.
[10]  Suzuki, K.; Takagi, T.; Hiraishi, T. Video analysis of fish schooling behavior in finite space using a mathematical model. Fish. Res. 2003, 60, 3–10, doi:10.1016/S0165-7836(02)00081-4.
[11]  Komatsu, T.; Tanoue, H.; Mohamad, N.; Watariguchi, K.; Osswald, T.; Hill, D.; Miyazaki, N. Relation Between Body Tilt Angle and Tail Beat Acceleration of a Small Fish, Parapristipoma trilineatum (Threeline Grunt), During Mobile and Immobile Periods Measured with a Micro Data Logger. In Global Change: Mankind-Marine Environment Interactions; Ceccaldi, H.-J., Dekeyser, I., Giraut, M., Stora, G., Eds.; Springer: Berlin, Germany, 2011; pp. 261–264.
[12]  Weihs, D. Hydromechanics of fish schooling. Nature 1973, 241, 290–291, doi:10.1038/241290a0.
[13]  Ward, A.J.W.; Krause, J. Body length assortative shoaling in the European minnow, Phoxinus phoxinus. Anim Behav. 2001, 62, 617–621, doi:10.1006/anbe.2001.1785.
[14]  Gallepp, G.W.; Magnuson, J.J. Effects of negative buoyancy on the behavior of the bluegill, Lepomis macrochirus Rafinesque. Trans. Am. Fish Soc. 1972, 101, 507–512, doi:10.1577/1548-8659(1972)101<507:EONBOT>2.0.CO;2.
[15]  Richard, S.; Steven, B.J.; Cooke, W.; Gary, A.; Scott, R.M. Evidence to challenge the “2% rule” for biotelemetry. N. Am. J. Fish. Manag. 1999, 19, 867–871, doi:10.1577/1548-8675(1999)019<0867:ETCTRF>2.0.CO;2.
[16]  Ropert-Coudert, Y.; Kato, A.; Wilson, R.P.; Cannell, B. Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar. Biol. 2006, 149, 139–148, doi:10.1007/s00227-005-0188-x.
[17]  Bridger, C.J.; Booth, R.K. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Rev. Fish. Sci. 2003, 11, 13–34, doi:10.1080/16226510390856510.
[18]  Matsumiya, Y.; Takahashi, K. Feeding habit of grunt, Parapristipoma trilineatum in Shijiki Bay, Hirado Island. Bull. Seikai Reg. Fish. Res. Lab. 1983, 59, 23–32.
[19]  Kawano, M. Study of the management of Threeline Grunt (Parapristipoma trilineatum) in coastal waters off Yamaguchi Prefecture. Bull. Yamaguchi Prefect. Gaikai Fish. Exp. Stn. 1997, 26, 41–53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133