This paper presents the concept, structural design and implementation of components of a multifunctional sensory network, consisting of a Mobile Robotic Platform (MRP) and stationary multifunctional sensors, which are wirelessly communicating with the MRP. Each section provides the review of the principles of operation and the network components’ practical implementation. The analysis is focused on the structure of the robotic platform, sensory network and electronics and on the methods of the environment monitoring and data processing algorithms that provide maximal reliability, flexibility and stable operability of the system. The main aim of this project is the development of the Robotic Nurse (RN)—a 24/7 robotic helper for the hospital nurse personnel. To support long-lasting autonomic operation of the platform, all mechanical, electronic and photonic components were designed to provide minimal weight, size and power consumption, while still providing high operational efficiency, accuracy of measurements and adequateness of the sensor response. The stationary sensors serve as the remote “eyes, ears and noses” of the main MRP. After data acquisition, processing and analysing, the robot activates the mobile platform or specific sensors and cameras. The cross-use of data received from sensors of different types provides high reliability of the system. The key RN capabilities are simultaneous monitoring of physical conditions of a large number of patients and alarming in case of an emergency. The robotic platform Nav-2 exploits innovative principles of any-direction motion with omni-wheels, navigation and environment analysis. It includes an innovative mini-laser, the absorption spectrum analyser and a portable, extremely high signal-to-noise ratio spectrometer with two-dimensional detector array.
References
[1]
Frankenstein. Available online: http://en.wikipedia.org/wiki/Frankenstein (accessed on 2 January 2013).
[2]
Japanese Nurse Robot (Actroid-F) 2010. Available online: http://www.youtube.com/watch?v=I7tYwnqot6M (accessed on 28 November 2012).
[3]
Matharoo, I.; Peshko, I.; Goldenberg, A. Robotic reconnaissance platform. I. Spectroscopic instruments with rangefinders. Rev. Sci. Instrum. 2011, 82, 113107:1–113107:15.
[4]
Engineering Services, Inc. Homepage. Available online: http://www.esit.com (accessed on 2 January 2013).
[5]
Peshko, I. Smart Synergistic Security Sensory Network for Harsh Environment: Net4S. In Nuclear Power: Control, Reliability and Human Factors; Tsvetkov, P., Ed.; InTech: Rijeka, Croatia, 2011; pp. 85–100.
[6]
Peshko, I. New-Generation Security Network with Synergistic IP-Sensors. In Proceedings of Optics East Advanced EnvironmentalChemicaland Biological Sensing Technologies V, Boston, MA, USA, 9–12 September 2007; pp. 34–46.
[7]
RP–7i ROBOT. Available online: http://www.intouchhealth.com/products-and-services/products/rp-7i-robot/ (accessed on 2 January 2013).
[8]
Robotics/Types of Robots/Wheeled. Available online: http://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled_ (accessed on 2 January 2013).
[9]
Foster-Miller TALON. Available online: http://en.wikipedia.org/wiki/Foster-Miller_TALON (accessed on 2 January 2013).
[10]
Hexapod (robotics). Available online: http://en.wikipedia.org/wiki/Hexapod_(robotics) (accessed on 2 January 2013).
[11]
Snakebot. Available online: http://en.wikipedia.org/wiki/Snakebot (accessed on 2 January 2013).
[12]
CrossWing Homepage. Available online: http://www.crosswing.com (accessed on 2 January 2013).
[13]
The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012.
[14]
Robot. Manipulators, New Achievements; Lazinica, A., Kawai, H., Eds.; InTech: Rijeka, Croatia, 2010.
Tsuji, T.; Harada, K.; Kaneko, K.; Kanehiro, F.; Maruyama, K. Grasp Planning for a Humanoid Hand. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 63–80.
[17]
Choi, D.; Lee, D.-W.; Shon, W.; Lee, H.-G. Design of 5 D.O.F Robot Hand with an Artificial Skin for an Android Robot. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 81–96.
[18]
Fukui, W.; Kobayashi, F.; Kojima, F. Development of Multi-Fingered Universal Robot Hand with Torque Limiter Mechanism. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 97–108.
[19]
Lee, S. MFR (Multi-purpose Field Robot) based on Human-Robot Cooperative Manipulation for Handling Building Materials. In Robot Manipulators, New Achievements; Lazinica, A., Kawai, H., Eds.; InTech: Rijeka, Croatia, 2010; pp. 289–313.
[20]
Lima, M.F.M.; Machado, J.A.T.; Ferrolho, A. A Sensor Classification Strategy for Robotic Manipulators. In Robot Manipulators, New Achievements; Lazinica, A., Kawai, H., Eds.; InTech: Rijeka, Croatia, 2010; pp. 315–328.
[21]
Beran, T.N.; Ramirez-Serrano, A. Robot Arm-Child Interactions: A Novel Application Using Bio-Inspired Motion Control. In Robot Arms; Goto, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 241–262.
[22]
Advances in Robot Navigation; Barrera, A., Ed.; InTech: Rijeka, Croatia, 2011.
[23]
Fujita, T.; Kondo, Y. 3D Terrain Sensing System using Laser Range Finder with Arm-Type Movable Unit. In Robot Arms; Goto, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 159–174.
[24]
Kawai, H.; Murao, T.; Fujita, M. Passivity-Based Visual Force Feedback Control for Eye-to-Hand Systems. In Robot Manipulators, New Achievements; Lazinica, A., Kawai, H., Eds.; InTech: Rijeka, Croatia, 2010; pp. 329–342.
[25]
Funabora, Y.; Yano, Y.; Doki, S.; Okuma, S. Autonomous Motion Adaptation Against Structure Changes Without Model Identification. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 29–40.
[26]
Gams, A.; Petric, T.; Ude, A.; ?lajpah, L. Performing Periodic Tasks: On-Line Learning, Adaptation and Synchronization with External Signals. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–28.
[27]
Design of Oscillatory Neural Network for Locomotion Control of Humanoid Robots. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 41–60.
[28]
R2D2, MD—Will Your Next Doctor Be a Robot? Available online: http://wraltechwire.com/business/tech_wire/news/blogpost/7301564/ (accessed on 02 January 2013).
[29]
Kroos, C.; Herath, D.C.; Stelarc. From Robot Arm to Intentional Agent: The Articulated Head. In Robot Arms; Goto, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 215–240.
[30]
Matsusaka, Y. Speech Communication with Humanoids: How People React and How We Can Build the System. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 165–188.
[31]
Hasanuzzaman, M.; Ueno, H. User, Gesture and Robot Behaviour Adaptation for Human-Robot Interaction. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 229–256.
[32]
Infantino, I. Affective Human-Humanoid Interaction Through Cognitive Architecture. In The Future of Humanoid Robots—Research and Applications; Zaier, R., Ed.; InTech: Rijeka, Croatia, 2012; pp. 147–164.
[33]
Facial Recognition System. Available online: http://en.wikipedia.org/wiki/Facial_recognition_system (accessed on 2 January 2013).
[34]
TOSHIBA Face Recognition. Available online: http://toshiba-face-recognition.software.informer.com/ (accessed on 2 January 2013).
[35]
FUJIFILM Canada. Available online: http://www.fujifilm.ca/products/digital_cameras/index.html (accessed on 2 January 2013).
[36]
Nanomedicine. Available online: http://en.wikipedia.org/wiki/Nanomedicine (accessed on 02 January 2013).
[37]
Matharoo, I.; Peshko, I. Smart spectroscopy sensors: II. Narrow-band laser systems. Opt. Laser Eng. 2013, 51, 270–277, doi:10.1016/j.optlaseng.2012.10.002.
[38]
New Mountain NM150WX. Available online: http://www.weathershack.com/product/new-mountain-nm150wx.html (accessed on 02 January 2013).
[39]
La Crosse Technology. Available online: http://www.lacrossetechnology.com/ws.php (accessed on 2 January 2013).
Wang, C.; Mandelis, A.; Garcia, J.A. Detectivity comparison between thin-film Pd/PVDF photopyroelectric interferometric and optical reflectance hydrogen sensors. Rev. Sci. Instrum. 1999, 70, 4370–4376, doi:10.1063/1.1150082.
[42]
RKI Instruments. Gas Detection for Life. Available online: http://www.rkiinstruments.com (accessed on 2 January 2013).
[43]
MultiRAE Pro Wireless Portable Multi-Threat Monitor for Radiation and Chemical Detection. Available online: http://www.raesystems.com/products/multirae-pro (accessed on 8 May 2013).
[44]
Moseley, P.T. Solid state gas sensors. Meas. Sci. Technol. 1997, 8, 223–237, doi:10.1088/0957-0233/8/3/003.
[45]
Model IQ-1000: 100+ Gas Portable. Available online: http://www.intlsensor.com/pdf/IQ1000.pdf (accessed on 2 January 2013).
[46]
Wang, C.; Mandelis, A. Instrumental noise and detectivity analysis of photopyroelectric destructive thermal-wave interferometry. Rev. Sci. Instrum. 2000, 71, 1961–1970, doi:10.1063/1.1150562.
[47]
Cubillas, A.M.; Lazaro, J.M.; Conde, O.M.; Petrovich, M.N.; Lopez-Higuera, J.M. Multi-line fit model for the detection of methane at ν2 + 2ν3 band using hollow-core photonic bandgap Fibres. Sensors 2009, 9, 490–502.
[48]
Toda, H. The precise mechanisms of a high-speed ultrasound gas sensor and detecting human-specific lung gas exchange. Int. J. Adv. Robotic Syst. 2012, 9, 249:1–249:9.
[49]
Capnography. Available online: http://en.wikipedia.org/wiki/Capnography (accessed on 2 January 2013).
[50]
RAID M100: Extensive Portable Capability. Available online: http://www.bruker.com/en/products/mobile-detection/ims/raid-m100/overview.html (accessed on 8 May 2013).
[51]
SABRE 5000. Available online: http://www.smithsdetection.com/sabre5000explosives.php (accessed on 2 January 2013).
[52]
Rothman, L.S.; Gordon, I.E.; Barbe, A.; ChrisBenner, D.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.-P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quat. Spectrosc. Radiat. Transf. 2009, 110, 533–572, doi:10.1016/j.jqsrt.2009.02.013.
[53]
NIST Atomic Spectra Database Lines Form. Available online: http://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 2 January 2013).
[54]
Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy: Principles and Applications; Springer-Verlag: Berlin, Germany, 2008.
Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mücke, R.; J?nker, B. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101–114, doi:10.1016/S0143-8166(01)00092-6.
[57]
Totschnig, G.; Lackner, M.; Shau, R.; Ortsiefer, M.; Rosskopf, J.; Amann, M.-C.; Winter, F. 1.8 μm vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4. Meas. Sci. Technol. 2003, 14, 472–478, doi:10.1088/0957-0233/14/4/310.
[58]
Lackner, M.; Totschnig, G.; Winter, F.; Ortsiefer, M.; Amann, M.-C.; Shau, R.; Rosskopf, J. Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate. Meas. Sci. Technol. 2003, 14, 101–106, doi:10.1088/0957-0233/14/1/315.
[59]
Hofmann, W.; Amann, M.-C. Long-wavelength vertical-cavity surface-emitting lasers for high-speed applications and gas sensing. IET Optoelectron. 2008, 2, 134–142, doi:10.1049/iet-opt:20070013.
[60]
LaserTechnik Berlin. Available online: http://www.ltb-berlin.de/Spectrometers.93.0.html?&L=1&gclid=COfhxa-UmKoCFchM4AodjWNWxA (accessed on 02 January 2013).
[61]
HORIBA Scientific. Available online: http://www.horiba.com/us/en/scientific/products/spectrometers (accessed on 02 January 2013).
[62]
HR4000 High-Resolution Spectrometer. Available online: http://www.oceanoptics.com/products/hr4000.asp (accessed on 2 January 2013).
[63]
P&P Optica. Available online: http://www.ppo.ca (accessed on 2 January 2013).
[64]
Zahniser, M.; Nelson, D.; McManus, J.; Kebabian, P.; Lloyd, D. Measurement of trace gas flexes using tunable diode laser spectroscopy. Philos. Trans. R. Soc. London Phys. Sci. Eng. 1995, 351, 371–382, doi:10.1098/rsta.1995.0040.
[65]
Arroyo, M.P.; Hanson, R.K. Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser. Appl. Opt. 1993, 32, 6104–6116, doi:10.1364/AO.32.006104.
[66]
Jabczyński, J.; Firak, J.; Peshko, I. Single-frequency, thin-film tuned, 0.6 W diode-pumped Nd:YVO4 laser. Appl. Opt. 1997, 36, 2484–2490, doi:10.1364/AO.36.002484.
[67]
Peshko, I.; Jabczyński, J.; Firak, J. Tunable single- and double-frequency diode-pumped Nd:YAG laser. IEEE J. Quant. Electron. 1997, 33, 1417–1423, doi:10.1109/3.605565.
[68]
Digonnet, M.J.F. Rare-Earth-Doped Fiber. Lasers and Amplifiers; Marcel Dekker, Inc.: New York, NY, USA, 2001.
[69]
Sacher Lasertechnik Group. Available online: http://www.sacher-laser.com (accessed on 28 November 2012).
[70]
DFB—Distributed Feedback Diodes. Available online: http://www.toptica.com/?id=127 (accessed on 8 May 2013).
[71]
Maclean, A.J.; Kemp, A.J.; Calves, S.; Kim, J.-Y.; Kim, T.; Dawson, M.D.; Burns, D. Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader. IEEE J. Quantum. Electron. 2008, 41, 216–225.
[72]
Absorption Spectroscopy. Available online: http://en.wikipedia.org/wiki/Absorption_spectroscopy (accessed on 2 January 2013).
[73]
Laser-induces Fluorescence. Available online: http://en.wikipedia.org/wiki/Laserinduced_fluorescence (accessed on 2 January 2013).
[74]
Raman Spectroscopy. Available online: http://en.wikipedia.org/wiki/Raman_spectroscopy (accessed on 2 January 2013).
[75]
Imaging Spectroscopy. Available online: http://en.wikipedia.org/wiki/Imaging_spectroscopy (accessed on 2 January 2013).
[76]
Barzda, V. Non-Linear Contrast Mechanisms for Optical Microscopy. In Biophysical Techniques in Photosynthesis II; Aartsma, T., Matysik, J., Eds.; Springer: Dordrecht, Netherland, 2008; Volume 2, pp. 35–54.
[77]
Weisberg, A.; Craparo, J.; de Saro, R.; Pawluczyk, R. Comparison of transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements. Appl. Opt. 2010, 49, C200–C210, doi:10.1364/AO.49.00C200.
[78]
Mars Science Laboratory. Available online: http://www.nasa.gov/mission_pages/msl/index.html (accessed on 2 January 2013).
Zhang, X.; Young, M.A.; Lyandres, O.; van Duyne, R.P. Rapid detection of an anthrax biomarker by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489.
[85]
?stmark, H.; Nordberg, M.; Carlsson, T.E. Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy. Appl. Opt. 2011, 50, 5592–5599, doi:10.1364/AO.50.005592.
[86]
Kraft, C.; Knetschke, Siegner, T.A.; Funk, R.H.W.; Salzer, R. Mapping of single cells by near infrared Raman microspectroscopy. Vib. Spectrosc. 2003, 32, 75–83, doi:10.1016/S0924-2031(03)00049-3.
Pawluczyk, O.; Blackmore, K.; Dick, S.; Lilge, L. High-Performance Broad-Band Spectroscopy for Breast Cancer Risk Assessment. In Proceedings of the SPIE: Photonic Applications in Biosensing and Imaging, Toronto, Canada, 30 September 2005; Wilson, B.C., Hornsey, R.I., Krull, U.J., Chan, W., Yu, K., Weersink, R.A., Eds.; Volume 5969, pp. 369–378.
[89]
2012 R & D 100 Award Winners. Available online: http://www.rdmag.com/Awards/RD-100-Awards/2012/06/R-D-100-2012-Winners-Overview/ (accessed on 28 November 2012).
[90]
FiberTech Optica. Available online: http://www.fibertech-optica.com/ (accessed on 28 November 2012).
[91]
Harvey, S.D.; Vucelick, M.E.; Lee, R.N.; Wright, B.W. Blind field test evaluation of Raman spectroscopy as a forensic tool. Forensic Sci. Int. 2002, 125, 12–21, doi:10.1016/S0379-0738(01)00615-6.
[92]
Hodges, C.M.; Akhavan, J. The use of Fourier Transform Raman spectroscopy in the forensic identification of illicit drugs and explosives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1990, 46, 303–307, doi:10.1016/0584-8539(90)80098-J.
[93]
Armenta, S.; Garrigues, S.; de la Guardia, M. Solid-phase FT-Raman determination of caffeine in energy drinks. Anal. Chim. Acta 2005, 547, 197–203, doi:10.1016/j.aca.2005.05.032.
[94]
Hatab, N.A.; Eres, G.; Hatzinger, P.B.; Baohua, G. Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2010, 41, 1131–1136, doi:10.1002/jrs.2574.
[95]
Docherty, F.T.; Monaghan, P.B.; McHugh, C.J.; Graham, D.; Smith, W.E.; Cooper, J.M. Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy. IEEE Sens. J. 2005, 5, 632–638.
[96]
About ENERGY STAR. Available online: http://www.energystar.gov/index.cfm?c=about.ab_index (accessed on 2 January 2013).
[97]
Reverter, F. The art of directly interfacing sensors to microcontrollers. J. Low Power Electron. Appl. 2012, 2, 265–281, doi:10.3390/jlpea2040265.
[98]
Electro-Optic Modulator. Available online: http://en.wikipedia.org/wiki/Electro-optic_modulator (accessed on 2 January 2013).