This paper qualitatively explores the performance limits, i.e., energy vs. frequency, of adiabatic logic circuits based on nanoelectromechanical (NEM) switches. It is shown that the contact resistance and the electro-mechanical switching behavior of the NEM switches dictate the performance of such circuits. Simplified analytical expressions are derived based on a 1-dimensional reduced order model (ROM) of the switch; the results given by this simplified model are compared to classical CMOS-based, and sub-threshold CMOS-based adiabatic logic circuits. NEMS-based circuits and CMOS-based circuits show different optimum operating conditions, depending on the device parameters and circuit operating frequency.
References
[1]
Koller, J.G.; Athas, W.C. Adiabatic Switching, Low Energy Computing, and the Physics of Storing and Erasing Information. In Proceedings of the Workshop on Physics and Computation. 1992 (PhysComp ’92), Dallas, TX, USA, 2–4 October 1992; pp. 267–270.
[2]
Athas, W.C.; Svensson, L.J. Reversible Logic Issues in Adiabatic CMOS. In Proceedings of the Workshop on Physics and Computation (PhysComp ’94), Dallas, TX, USA, 17–20 November 1994; pp. 111–118.
[3]
Paul, S.; Schlaffer, A.M.; Nossek, J.A. Optimal charging of capacitors. IEEE Trans. Circuits Syst. I 2000, 47, 1009–1016, doi:10.1109/81.855456.
[4]
Teichmann, P. Adiabatic Logic: Future Trend and System Level Perspective; Springer: Dordrecht, the Netherlands, 2012.
Akarvardar, K.; Elata, D.; Parsa, R.; Wan, G.C.; Yoo, K.; Provine, J.; Peumans, P.; Howe, R.T.; Wong, H.-S.P. Design Considerations for Complementary Nanoelectromechanical Logic Gates. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 299–302.
[7]
Kam, H.; King Liu, T.-J.; Stojanovic, V.; Markovic, D.; Alon, E. Design, optimization, and scaling of MEM relays for ultra-low power digital logic. IEEE Trans. Electron Devices 2011, 58, 236–250, doi:10.1109/TED.2010.2082545.
[8]
Pawashe, C.; Lin, K.; Kuhn, K.J. Scaling limits of electrostatic nanorelays. IEEE Trans. Electron Devices 2013, 60, 2936–2942, doi:10.1109/TED.2013.2273217.
[9]
Fanet, H. Circuit logique à faible consommation et circuit intégré comportant au moins un tel circuit logique(in French). EP 2549654 A1, 22 July 2011.
[10]
Svensson, L.; Koller, J.G. Adiabatic Charging without Inductors. In Proceedings of the International Workshop on Low-Power Design, Napa, CA, USA, 24–27 April 1994; pp. 159–164.
[11]
Nathenson, H.C. The resonant gate transistor. IEEE Trans. Electron Devices 1967, 14, 117–133, doi:10.1109/T-ED.1967.15912.
[12]
Majumder, S.; McGruer, N.E.; Adams, G.G.; Zavracky, P.M.; Morrison, R.H.; Krim, J. Study of contacts in an electrostatically actuated microswitch. Sens. Actuators A: Phys. 2001, 93, 19–26, doi:10.1016/S0924-4247(01)00627-6.
[13]
Toler, B.F.; Coutu, R.A., Jr; McVride, J.W. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J. Micromech. Microeng. 2013, 23, doi:10.1088/0960-1317/23/10/103001.
[14]
Slade, P.G. Electrical Contacts: Principles and Applications; Marcel Dekker: New York, NY, USA, 1999.
[15]
Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK; p. 1987.
[16]
Younis, M.I.; Abdel-Rahman, E.M.; Nayfeh, A. A reduced-order model for electrically actuated microbeam-based MEMS. IEEE J. Microelectromech. Syst. 2003, 12, 672–680, doi:10.1109/JMEMS.2003.818069.
[17]
Houri, S.; Valentian, A.; Fanet, H. Transient Dissipation in NEMS-Based Circuits. In Proceedings of the Third Berkeley Symposium on Energy Efficient Electronic Systems; Berkeley, CA, USA: 28–29 October 2013.
[18]
Leus, V.; Elata, D. On the dynamic response of electrostatic MEMS switches. IEEE J. Microelectromech. Syst. 2008, 17, 236–243, doi:10.1109/JMEMS.2007.908752.
Emerging Research Devices. International Technology Roadmap for Semiconductors. 2009. Available online: http://www.itrs.net/Links/2009ITRS/Home2009.htm (accessed on 29 September 2013).