全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effects of Uniquely-Processed Titanium on Biological Systems: Implications for Human Health and Performance

DOI: 10.3390/jfb5010001

Keywords: Aqua Titan, action potential, long-term potentiation, tendon compliance, musculotendinous function, cell adhesion and growth, autonomic nervous system, pico-nanometer scale

Full-Text   Cite this paper   Add to My Lib

Abstract:

Titanium is biocompatible and widely utilized in a variety of applications. Recently, titanium in pico-nanometer scale and soluble form (Aqua Titan) has expanded its use to applied human health and performance. The purpose of this article is to review the current evidence associated with specific physiological responses to Aqua Titan-treated materials. In vitro studies have shown that application of Aqua Titan can modify membrane potential and long-term potentiation in isolated hippocampal neurons, suggesting reduced pain memory as a possible mechanism for reported analgesia. Proximal contact with Aqua Titan-treated titanium increased gene expression, protein synthesis, cell growth and adhesion in normal cultured muscle and bone cells, suggesting application for Aqua Titan in clinical implant procedures and wound healing. Evidence for beneficial effects on neuromuscular control of muscle-tendon function and improvements in running economy in human athletes was seen when Aqua Titan-treated tape was applied to the human triceps surae following fatigue induced by prior strenuous exercise. Finally, behavioral responses and effects on the autonomic nervous system to environmental exposure suggest Aqua Titan may promote a mild relaxant, or stress-suppressive response. Together, data suggest exposure to Aqua Titan-treated materials modulates aspects of growth and function in neuronal and other musculoskeletal cells with possible benefits to musculotendinous recovery from exercise and to the systemic response to stress.

References

[1]  Buettner, K.M.; Valentine, A.M. Bioinorganic chemistry of titanium. Chem. Rev. 2012, 112, 1863–1881, doi:10.1021/cr1002886.
[2]  Hirata, Y.; Ueda, Y.; Takase, H.; Suzuki, K. High Functional Water Containing Titanium and Method and Apparatus for Producing the Same. NZ Patent 522431. filed 29 November 2000, and issued 1 October 2004.
[3]  Korte, M. Influence of aquatitan tape in nerve cells of the central nervous system. J. Clin. Biochem. Nutr. 2008, 43 Suppl 1, 44–47.
[4]  Sugita, Y.; Ishizaki, K.; Iwasa, F.; Ueno, T.; Minamikawa, H.; Yamada, M.; Suzuki, T.; Ogawa, T. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium. Biomaterials 2011, 32, 8374–8384.
[5]  Carballo-Vila, M.; Moreno-Burriel, B.; Chinarro, E.; Jurado, J.R.; Casan-Pastor, N.; Collazos-Castro, J.E. Titanium oxide as substrate for neural cell growth. J. Biomed. Mater. Res. A 2009, 90, 94–105.
[6]  Overgaard, L.; Danielsen, N.; Bjursten, L.M. Anti-inflammatory properties of titanium in the joint environment. An experimental study in rats. J. Bone Joint Surg. Br. 1998, 80, 888–893, doi:10.1302/0301-620X.80B5.8101.
[7]  Sahlin, H.; Contreras, R.; Gaskill, D.F.; Bjursten, L.M.; Frangos, J.A. Anti-inflammatory properties of micropatterned titanium coatings. J. Biomed. Mater. Res. A 2006, 77, 43–49.
[8]  Suzuki, R.; Muyco, J.; McKittrick, J.; Frangos, J.A. Reactive oxygen species inhibited by titanium oxide coatings. J. Biomed. Mater. Res. A 2003, 66, 396–402.
[9]  Hughes, J.D.; Fink, P.W.; Graham, D.F.; Rowlands, D.S. Effect of microtitanium impregnated tape on the recovery of triceps surae musculotendinous function following strenuous running. SpringerPlus 2013, doi:10.1186/2193-1801-2-653.
[10]  Rowlands, D.S.; Graham, D.F.; Wadsworth, D.P.; Fink, P.W.; Hughes, J.D. Effect of whole-body microtitanium-treated garments on metabolic cost of exercise following strenuous hill running. J. Sci. Med. Sport 2013, doi:10.1016/j.jsams.2013.03.003.
[11]  Aoi, W.; Kamata, T.; Ishiura, Y.; Tomaru, M.; Satoh, Y.; Hitomi, Y.; Uchida, K.; Naito, Y.; Yoshikawa, T. Titanium-treated surroundings attenuate psychological stress associated with autonomic nerve regulation in office workers with daily emotional stress. Physiol. Behav. 2012, 108, 13–18, doi:10.1016/j.physbeh.2012.09.009.
[12]  Choudhary, S.; Berhe, M.; Haberstroh, K.M.; Webster, T.J. Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo. Int. J. Nanomed. 2006, 1, 41–49, doi:10.2147/nano.2006.1.1.41.
[13]  Ishizaki, K.; Sugita, Y.; Iwasa, F.; Minamikawa, H.; Ueno, T.; Yamada, M.; Suzuki, T.; Ogawa, T. Nanometer-thin TiO2 enhances skeletal muscle cell phenotype and behavior. Int. J. Nanomed. 2011, 6, 2191–2203.
[14]  Masuda, T.; Yliheikkila, P.K.; Felton, D.A.; Cooper, L.F. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int. J. Oral Maxillofac. Implants 1998, 13, 17–29.
[15]  Goldmann, W.H.; Ingber, D.E. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochem. Biophys. Res. Commun. 2002, 290, 749–755, doi:10.1006/bbrc.2001.6243.
[16]  Humphries, J.D.; Wang, P.; Streuli, C.; Geiger, B.; Humphries, M.J.; Ballestrem, C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 2007, 179, 1043–1057, doi:10.1083/jcb.200703036.
[17]  Arnesen, S.; Mosler, S.; Larsen, N.; Gadegaard, N.; Purslow, P.; Lawson, M. The effects of collagen type I topography on myoblasts in vitro. Connect. Tissue Res. 2004, 45, 238–247, doi:10.1080/03008200490888424.
[18]  Beier, J.P.; Klumpp, D.; Rudisile, M.; Dersch, R.; Wendorff, J.H.; Bleiziffer, O.; Arkudas, A.; Polykandriotis, E.; Horch, R.E.; Kneser, U. Collagen matrices from sponge to nano: New perspectives for tissue engineering of skeletal muscle. BMC Biotechnol. 2009, 9, doi:10.1186/1472-6750-9-34.
[19]  Saruwatari, L.; Aita, H.; Butz, F.; Nakamura, H.K.; Ouyang, J.; Yang, Y.; Chiou, W.A.; Ogawa, T. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. J. Bone Miner. Res. 2005, 20, 2002–2016, doi:10.1359/JBMR.050703.
[20]  Ogawa, T.; Nishimura, I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int. J. Oral Maxillofac. Implants 2003, 18, 200–210.
[21]  Onur, M.A.; Cehreli, M.C.; Tas, Z.; Sahin, S. Effects of machined/turned, TiO2-blasted and sandblasted/acid-etched titanium oral implant surfaces on nerve conduction: A study on isolated rat sciatic nerves. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 67, 772–778.
[22]  Cehreli, M.C.; Onur, M.A.; Sahin, S. Effects of hydroxyapatite-coated and commercially pure titanium oral implant surfaces on compound nerve action potentials. Clin. Oral Implants Res. 2003, 14, 269–272, doi:10.1034/j.1600-0501.2003.140303.x.
[23]  Sandkuhler, J. Learning and memory in pain pathways. Pain 2000, 88, 113–118, doi:10.1016/S0304-3959(00)00424-3.
[24]  Wadsworth, D.P.; Walmsley, A.; Rowlands, D.S. Aquatitan garments extend joint range of motion without effect on run performance. Med. Sci. Sports Exerc. 2010, 42, 2273–2281, doi:10.1249/MSS.0b013e3181e397a6.
[25]  Hultborn, H.; Meunier, S.; Pierrot-Deseilligny, E.; Shindo, M. Changes in presynaptic inhibition of ia fibres at the onset of voluntary contraction in man. J. Physiol. 1987, 389, 757–772.
[26]  Ishikawa, M.; Komi, P.V. The role of the stretch reflex in the gastrocnemius muscle during human locomotion at various speeds. J. Appl. Physiol. 2007, 103, 1030–1036, doi:10.1152/japplphysiol.00277.2007.
[27]  Cronin, N.J.; Carty, C.P.; Barrett, R.S. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running. PLoS One 2011, 6, doi:10.1371/journal.pone.0023917.
[28]  Kay, A.D.; Blazevich, A.J. Isometric contractions reduce plantar flexor moment, achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J. Appl. Physiol. 2009, 107, 1181–1189, doi:10.1152/japplphysiol.00281.2009.
[29]  Mazzaro, N.; Grey, M.J.; Sinkjaer, T. Contribution of afferent feedback to the soleus muscle activity during human locomotion. J. Neurophysiol. 2005, 93, 167–177, doi:10.1152/jn.00283.2004.
[30]  Lichtwark, G.A.; Wilson, A.M. Is achilles tendon compliance optimised for maximum muscle efficiency during locomotion? J. Biomech. 2007, 40, 1768–1775, doi:10.1016/j.jbiomech.2006.07.025.
[31]  Rall, J.A.; Woledge, R.C. Influence of temperature on mechanics and energetics of muscle contraction. Am. J. Physiol. Reg. Int. Comp. Physiol. 1990, 259, R197–R203.
[32]  Ettema, G.J.C.; Huijing, P.A. Skeletal muscle stiffness in static and dynamic contractions. J. Biomech. 1994, 27, 1361–1368.
[33]  De Vrind, H.; Wondergem, J.; Haveman, J. Hyperthermia-induced damage to rat sciatic nerve assessed in vivo with functional methods and with electrophysiology. J. Neurosci. Methods 1992, 45, 165–174, doi:10.1016/0165-0270(92)90073-M.
[34]  Braun, W.A.; Dutto, D.J. The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur. J. Appl. Physiol. 2003, 90, 29–34, doi:10.1007/s00421-003-0857-8.
[35]  Eston, R.G.; Mickleborough, J.; Baltzopoulos, V. Eccentric activation and muscle damage: Biomechanical and physiological considerations during downhill running. Br. J. Sports Med. 1995, 29, 89–94, doi:10.1136/bjsm.29.2.89.
[36]  Hamill, J.; Freedson, P.; Clarkson, P.; Braun, B. Muscle soreness during running-biomechanical and physiological considerations. Int. J. Sport Biomech. 1991, 7, 125–137.
[37]  Reggiani, C.; Bottinelli, R.; Stienen, G.J.M. Sarcomeric myosin isoforms: Fine tuning of a molecular motor. Physiology 2000, 15, 26–33.
[38]  Franch, J.; Madsen, K.; Djurhuus, M.S.; Pedersen, P.K. Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc. 1998, 30, 1250–1256.
[39]  Dempsey, J.A. Bayliss-starling memorial lecture—2012 “new perspectives concerning feedback influences on cardio-respiratory control during rhythmic exercise and on exercise performance”. J. Physiol. 2012, 590, 4129–4144, doi:10.1113/jphysiol.2012.233908.
[40]  Tidball, J.G.; Villalta, S.A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Reg. Int. Comp. Physiol. 2010, 298, R1173–R1187, doi:10.1152/ajpregu.00735.2009.
[41]  Aoi, W.; Takanami, Y.; Kawai, Y.; Otsuki, T.; Kawake, T.; Naito, Y.; Yoshikawa, T. Relaxant effect of microtitan via regulation of autonomic nerve activity in mice. Life Sci. 2009, 85, 408–411, doi:10.1016/j.lfs.2009.07.007.
[42]  Shibakusa, T.; Iwaki, Y.; Mizunoya, W.; Matsumura, S.; Nishizawa, Y.; Inoue, K.; Fushiki, T. The physiological and behavioral effects of subchronic intracisternal administration of TGF-beta in rats: Comparison with the effects of CRF. Biomed. Res. 2006, 27, 297–305, doi:10.2220/biomedres.27.297.
[43]  Zeidan, F.; Johnson, S.K.; Diamond, B.J.; David, Z.; Goolkasian, P. Mindfulness meditation improves cognition: Evidence of brief mental training. Conscious. Cogn. 2010, 19, 597–605, doi:10.1016/j.concog.2010.03.014.
[44]  Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001, doi:10.1016/S0025-6196(12)62272-1.
[45]  Roth, T.; Roehrs, T. Insomnia: Epidemiology, characteristics, and consequences. Clin. Cornerstone 2003, 5, 5–15, doi:10.1016/S1098-3597(03)90031-7.
[46]  Baglioni, C.; Spiegelhalder, K.; Lombardo, C.; Riemann, D. Sleep and emotions: A focus on insomnia. Sleep Med. Rev. 2010, 14, 227–238, doi:10.1016/j.smrv.2009.10.007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133