全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes

DOI: 10.3390/jfb4030162

Keywords: biomimetic materials, cross-linking, collagen, cornea, tissue engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

A bi-functional epoxy-based cross-linker, 1,4-Butanediol diglycidyl ether (BDDGE), was investigated in the fabrication of collagen based corneal substitutes. Two synthetic strategies were explored in the preparation of the cross-linked collagen scaffolds. The lysine residues of Type 1 porcine collagen were directly cross-linked using l,4-Butanediol diglycidyl ether (BDDGE) under basic conditions at pH 11. Alternatively, under conventional methodology, using both BDDGE and 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as cross-linkers, hydrogels were fabricated under acidic conditions. In this latter strategy, Cu(BF 4) 2·XH 2O was used to catalyze the formation of secondary amine bonds. To date, we have demonstrated that both methods of chemical cross-linking improved the elasticity and tensile strength of the collagen implants. Differential scanning calorimetry and biocompatibility studies indicate comparable, and in some cases, enhanced properties compared to that of the EDC/NHS controls. In vitro studies showed that human corneal epithelial cells and neuronal progenitor cell lines proliferated on these hydrogels. In addition, improvement of cell proliferation on the surfaces of the materials was observed when neurite promoting laminin epitope, IKVAV, and adhesion peptide, YIGSR, were incorporated. However, the elasticity decreased with peptide incorporation and will require further optimization. Nevertheless, we have shown that epoxy cross-linkers should be further explored in the fabrication of collagen-based hydrogels, as alternatives to or in conjunction with carbodiimide cross-linkers.

References

[1]  Shin, H.; Jo, S.; Mikos, A.G. Biomimetic materials for tissue engineering. Biomaterials 2003, 24, 4353–4364, doi:10.1016/S0142-9612(03)00339-9.
[2]  Heindl, L.M.; Riss, S.; Adler, W.; Bucher, F.; Hos, D.; Cursiefen, C. Split cornea transplantation: Relationship between storage time of split donor tissue and outcome. Ophthalmology 2013. in press.
[3]  Du, Y.Q.; Carlson, E.C.; Funderburgh, M.L.; Birk, D.E.; Pearlman, E.; Guo, N.X.; Kao, W.W.Y.; Funderburgh, J.L. Stem cell therapy restores transparency to defective murine corneas. Stem Cells 2009, 27, 1635–1642, doi:10.1002/stem.91.
[4]  Ruberti, J.W.; Sinha Roy, A.; Roberts, C.J. Corneal biomechanics and biomaterials. Annu. Rev. Biomed. Eng. 2011, 13, 269–295, doi:10.1146/annurev-bioeng-070909-105243.
[5]  Yang, C.L.; Hillas, P.J.; Baez, J.A.; Nokelainen, M.; Balan, J.; Tang, J.; Spiro, R.; Polarek, J.W. The application of recombinant human collagen in tissue engineering. Biodrugs 2004, 18, 103–119, doi:10.2165/00063030-200418020-00004.
[6]  Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008, 60, 184–198, doi:10.1016/j.addr.2007.08.041.
[7]  Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524, doi:10.1038/nmat1421.
[8]  Fagerholm, P.; Lagali, N.S.; Merrett, K.; Jackson, W.B.; Munger, R.; Liu, Y.W.; Polarek, J.W.; Soderqvist, M.; Griffith, M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci. Transl. Med. 2010, 2, doi:10.1126/scitranslmed.3001022.
[9]  Tampieri, A.; Sandri, M.; Landi, E.; Pressato, D.; Francioli, S.; Quarto, R.; Martin, I. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 2008, 29, 3539–3546, doi:10.1016/j.biomaterials.2008.05.008.
[10]  Nam, K.; Murakoshi, A.; Kimura, T.; Fujisato, T.; Kitamura, S.; Kishida, A. Study on the physical properties of tissue-engineered blood vessels made by chemical cross-linking and polymer-tissue cross-linking. J. Artif. Organs. 2009, 12, 47–54, doi:10.1007/s10047-008-0443-2.
[11]  Zeeman, R. Cross-linking of Collagen-Based Materials. Ph.D. Dissertation, Universiteit Twente, Enschede, Netherlands, 1998.
[12]  Zeeman, R.; Dijkstra, P.J.; van Wachem, P.B.; van Luyn, M.J.A.; Hendriks, M.; Cahalan, P.T.; Feijen, J. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials 1999, 20, 921–931, doi:10.1016/S0142-9612(98)00242-7.
[13]  Zeeman, R.; Dijkstra, P.J.; van Wachem, P.B.; van Luyn, M.J.A.; Hendriks, M.; Cahalan, P.T.; Feijen, J. Crosslinking and modification of dermal sheep collagen using 1,4-butanediol diglycidyl ether. J. Biomed. Mater. Res. 1999, 46, 424–433, doi:10.1002/(SICI)1097-4636(19990905)46:3<424::AID-JBM16>3.0.CO;2-R.
[14]  Zeeman, R.; Dijkstra, P.J.; van Wachem, P.B.; van Luyn, M.J.A.; Hendriks, M.; Cahalan, P.T.; Feijen, J. The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen. J. Biomed. Mater. Res. 2000, 51, 541–548, doi:10.1002/1097-4636(20000915)51:4<541::AID-JBM1>3.0.CO;2-P.
[15]  La Gatta, A.; Schiraldi, C.; Papa, A.; D’Agostino, A.; Cammarota, M.; de Rosa, A.; de Rosa, M. Hyaluronan scaffolds via diglycidyl ether crosslinking: Toward improvements in composition and performance. Carbohyd. Polym. 2013, 96, 536–544, doi:10.1016/j.carbpol.2013.04.022.
[16]  Nicoletti, A.; Fiorini, M.; Paolillo, J.; Dolcini, L.; Sandri, M.; Pressato, D. Effects of different crosslinking conditions on the chemical-physical properties of a novel bio-inspired composite scaffold stabilised with 1,4-butanediol diglycidyl ether (BDDGE). J. Mater. Sci.-Mater. M. 2013, 24, 17–35, doi:10.1007/s10856-012-4782-4.
[17]  Kleinman, H.K.; Cannon, F.B.; Laurie, G.W.; Hassell, J.R.; Aumailley, M.; Terranova, V.P.; Martin, G.R.; Duboisdalcq, M. Biological activities of laminin. J. Cell. Biochem. 1985, 27, 317–325, doi:10.1002/jcb.240270402.
[18]  Timpl, R.; Rohde, H.; Robey, P.G.; Rennard, S.I.; Foidart, J.M.; Martin, G.R. Laminin—A glycoprotein from basement membranes. J. Biol. Chem. 1979, 254, 9933–9937.
[19]  Mecham, R.P. Laminin receptors. Annu. Rev. Cell. Biol. 1991, 7, 71–91, doi:10.1146/annurev.cb.07.110191.000443.
[20]  Li, F.; Griffith, M.; Li, Z.; Tanodekaew, S.; Sheardown, H.; Hakim, M.; Carlsson, D.J. Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials 2005, 26, 3093–3104, doi:10.1016/j.biomaterials.2004.07.063.
[21]  Chen, Y.-H.; Yeh, M.-H.; Lai, H.-M. Preparation of a Biodegradable Thermal-Sensitive Gel System. U.S. Patent 20040013733, 30 December 2002.
[22]  Kamal, A.; Ramu, R.; Azhar, M.A.; Khanna, G.B.R. Copper(II) tetrafluoroborate-catalyzed ring-opening of epoxides by amines. Tetrahedron Lett. 2005, 46, 2675–2677, doi:10.1016/j.tetlet.2005.02.073.
[23]  André, I.; Linse, S.; Mulder, F.A.A. Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy:? Application to apo calmodulin. J. Am. Chem. Soc. 2007, 129, 15805–15813, doi:10.1021/ja0721824.
[24]  Patel, S.; Marshall, J.; Fitzke, F.W. Refractive index of the human corneal epithelium and stroma. J. Refract. Surg. 1995, 11, 100–105.
[25]  Liu, Y.; Griffith, M.; Watsky, M.A.; Forrester, J.V.; Kuffova, L.; Grant, D.; Merrett, K.; Carlsson, D.J. Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules 2006, 7, 1819–1828, doi:10.1021/bm060160o.
[26]  Zeng, Y.J.; Yang, J.; Huang, K.; Lee, Z.H.; Lee, X.Y. A comparison of biomechanical properties between human and porcine cornea. J. Biomech. 2001, 34, 533–537, doi:10.1016/S0021-9290(00)00219-0.
[27]  Crabb, R.A.B.; Chau, E.P.; Evans, M.C.; Barocas, V.H.; Hubel, A. Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Eng. 2006, 12, 1565–1575, doi:10.1089/ten.2006.12.1565.
[28]  Merrett, K.; Fagerholm, P.; McLaughlin, C.R.; Dravida, S.; Lagali, N.; Shinozaki, N.; Watsky, M.A.; Munger, R.; Kato, Y.; Li, F.F.; et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: Performance of type I versus type III collagen. Invest. Ophth. Vis. Sci. 2008, 49, 3887–3894, doi:10.1167/iovs.07-1348.
[29]  Tighe, B. Eye contact. Chem. Brit. 1992, 28, 241–244.
[30]  Angele, P.; Abke, J.; Kujat, R.; Faltermeier, H.; Schumann, D.; Nerlich, M.; Kinner, B.; Englert, C.; Ruszczak, Z.; Mehrl, R.; et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 2004, 25, 2831–2841, doi:10.1016/j.biomaterials.2003.09.066.
[31]  Liu, Y.W.; Gan, L.H.; Carlsson, D.J.; Fagerholm, P.; Lagali, N.; Watsky, M.A.; Munger, R.; Hodge, W.G.; Priest, D.; Griffith, M. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest. Ophth. Vis. Sci. 2006, 47, 1869–1875, doi:10.1167/iovs.05-1339.
[32]  Griffith, M.; Osborne, R.; Munger, R.; Xiong, X.J.; Doillon, C.J.; Laycock, N.L.C.; Hakim, M.; Song, Y.; Watsky, M.A. Functional human corneal equivalents constructed from cell lines. Science 1999, 286, 2169–2172, doi:10.1126/science.286.5447.2169.
[33]  Wood, J.N.; Bevan, S.J.; Coote, P.R.; Dunn, P.M.; Harmar, A.; Hogan, P.; Latchman, D.S.; Morrison, C.; Rougon, G.; Theveniau, M.; et al. Novel cell lines display properties of nociceptive sensory neurons. P. R. Soc. B Biol. Sci. 1990, 241, 187–194, doi:10.1098/rspb.1990.0084.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133