Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU) and variously characterized by field emission scanning electron microscopy (FESEM), fourier transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD) and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w) AgNO 3, 1% and 10% (w/w) Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA) indicated greater thermal stability.
References
[1]
Widmer, A. IV related infections. Preventation and control of nosocomial infections. In Nosocomial Infections; Wenzel, R.P., Ed.; Nosocomial infections, Williams & Wilkins: Baltimore, UK, 1993; pp. 556–579.
[2]
An, Y.H.; Friedman, R.J. Prevention of sepsis in total joint arthroplasty. J. Hosp. Infect. 1996, 33, 93–108, doi:10.1016/S0195-6701(96)90094-8.
[3]
Eiff, V.; Heilmann, C.; Herrmann, C.; Peters, G.M. Basic aspects of the pathogenesis of Staphylococcal polymer-associated infections. Infection 1999, 27, S7–S10, doi:10.1007/BF02561610.
[4]
Arnow, P.M.; Quimosing, E.M.; Meach, M. Consequences of intravascular catheter sepsis. Clin. Infect. Dis. 1992, 11, 408–415.
Bach, A. Prevention of infections caused by central venous catheters-established and novel measures. Infection 1999, 27, S11–S15, doi:10.1007/BF02561611.
[7]
Spink, V.W.; Ferris, V. Quantitative action of penicillin inhibitor from penicillin resistant strain of Staphylococcus. Science 1945, 102, 102–221.
Griffiths-Jones, A. Methicillin-resistant Staphylococcus aureus in wound care. J. Wound Care. 1995, 4, 481–483.
[10]
Marone, P.; Monzillo, V.; Perversi, L.; Carretto, E. Comparative in vitro activity of silver sulfadiazine, alone and in combination with cerium nitrate, against Staphylococci and gram-negative bacteria. J. Chemother. 1998, 10, 17–21.
[11]
Strock, L.L.; Lee, M.M.; Rutan, R.L.; Desai, M.H.; Robson, M.C.; Herndon, D.N. Topical Bactoban (mupirocin): Efficacy in treating burn wounds infected with methicilin resistant Staphylococci. J. Burn Care Rehabil. 1990, 11, 454–459, doi:10.1097/00004630-199009000-00015.
[12]
Eltringham, I. Mupirocin resistance and methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 1997, 35, 1–8, doi:10.1016/S0195-6701(97)90162-6.
Mbhele, Z.H.; Salemane, M.G.; van Slittert, C.G.C.E.; Nedeljkovi?, V.; Djokovi?, A.S.; Luyt, A.S. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem. Mater. 2003, 15, 5019–5024, doi:10.1021/cm034505a.
[15]
Akamatsu, K.; Takei, S.; Mizuhata, M.; Kajimani, A.; Deki, S.; Takeoka, S.; Fujii, M.; Hayashi, S.; Yamamoto, K. Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Film 2000, 359, 55–60, doi:10.1016/S0040-6090(99)00684-7.
[16]
Southward, R.E.; Thompson, D.W.; St. Clair, A.K. Control of reflectivity and surface conductivity in metallized polyamide films prepared via in situ silver (I) reduction. Chem. Mater. 1997, 9, 501–510, doi:10.1021/cm960349e.
[17]
White, R.J. An historical overview on the use of silver in modern wound management. Br. J. Nur. 2002, 15, 3–8.
[18]
Russell, A.D.; Hugo, W.B. Antimicrobial activity and action of silver. Prog. Med. Chem. 1994, 31, 350–370.
[19]
Lansdown, A.B. Silver. 1 Its antibacterial properties and mechanism of action. J. Wound Care. 2002, 11, 125–130.
[20]
Lansdown, A.B. Silver. 2 Toxicity in mammals and how its products aid wound repair. J. Wound Care. 2002, 11, 173–177.
[21]
Lansdown, A.B.; Williams, A. How safe is silver in wound care? J. Wound Care. 2004, 13, 131–136.
[22]
Golubovich, V.N.; Rabotnova, I.L. Kinetics of growth inhibition by silver ions. Microbiology 1974, 43, 948–950.
[23]
Zhao, G.; Stevens, E. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998, 11, 27–32, doi:10.1023/A:1009253223055.
[24]
Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D.J.; Snah, S.I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, 244–249, doi:10.1166/jnn.2005.034.
[25]
Furno, F.; Morley, K.S.; Wong, B.; Sharp, B.L.; Arnold, P.L.; Howdle, S.M.; Bayston, R.; Brown, P.D.; Wiship, P.D.; Reid, H.J. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chemother. 2004, 54, 1019–1024, doi:10.1093/jac/dkh478.
[26]
Hendry, A.T.; Stewart, I.O. Silver resistant Enterobacteriaceae from hospital patients. Can. J. Microbiol. 1979, 25, 915–921, doi:10.1139/m79-136.
[27]
Chen, J.C.; Lin, Z.H.; Ma, X.X. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett. Appl. Microbiol. 2003, 37, 105–108, doi:10.1046/j.1472-765X.2003.01348.x.
[28]
Fu, J.K.; Zhang, W.D.; Liu, Y.Y.; Lin, Z.Y.; Yao, B.X.; Weng, S.Z.; Zeng, J.L. Characterization of adsorption and reduction of noble metal ions by bacteria. Chem. J. Chin. University 1999, 20, 1452–1454.
[29]
Dur?n, N.; Marcato, P.D.; Souza, G.I.H.D.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process of textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208, doi:10.1166/jbn.2007.022.
Chopra, I. The increasing use of silver based products on antimicrobial agents: A useful development or a cause for concern? J. Antimicrob. Chemother. 2007, 59, 587–590, doi:10.1093/jac/dkm006.
[35]
Dunn, K.; Edwards-Jones, V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns 2004, 30, S1–S9, doi:10.1016/S0305-4179(04)90000-9.
[36]
Hall, R.E.; Bender, G.; Marquis, R.E. Inhibitory and cidal antimicrobial actions of electrically generated silver ions. J. Oral Maxillof. Surg. 1987, 45, 779–784, doi:10.1016/0278-2391(87)90202-3.
[37]
Maple, P.A.; Hamilton-Miller, J.M.; Brumfitt, W. Comparison of the in-vitro activities of the topical antimicrobial azelaic acid, nitofurazone, sulphadiazine and mupirocin against methicillin-resistant Staphylococcus aureu. J. Anticrob. Chemother. 1992, 29, 661–668, doi:10.1093/jac/29.6.661.
[38]
Van Hasselt, P.; Gashe, B.A.; Ahmad, J. Colloidal silver as an antimicrobial agent: fact or fiction? J. Wound Care. 2004, 13, 154–155.
[39]
Cho, J.W.; So, J.H. Polyurethane–silver fibers prepared by infiltration and reduction of silver nitrate. Mater. Lett. 2006, 60, 2653–2656, doi:10.1016/j.matlet.2006.01.072.
[40]
Paul, S.; Paul, D.; Fern, G.R.; Ray, A.K. Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin. J. R. Soc. Interf. 2011, 8, 1204–1211, doi:10.1098/rsif.2010.0747.
[41]
Sreenivasan, K. Effect of added silver ions on physiochemical properties of polyurethane. J. Appl. Poly. Sci. 1997, 65, 2081–2084, doi:10.1002/(SICI)1097-4628(19970912)65:11<2081::AID-APP3>3.0.CO;2-D.
[42]
Tebbs, S.A.; Sawyer, A.; Elliott, T.S.J. Influence of surface morphology on in vitro bacterial adherence to central nervous catheters. Br. J. Anaesth. 1994, 72, 587–592, doi:10.1093/bja/72.5.587.
[43]
Jeong, S.H.; Yeo, S.Y.; Yi, S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411, doi:10.1007/s10853-005-4339-8.
[44]
Chen, S.; Carrol, D.L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2002, 2, 1003–1007, doi:10.1021/nl025674h.
[45]
Zhang, Z.; Zhang, L.; Wang, S.; Chen, W.; Lei, Y. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer 2001, 42, 8315–8318, doi:10.1016/S0032-3861(01)00285-3.
[46]
Liu, H.; Ge, X.; Ni, Y.; Ye, Q.; Zhang, Z. Synthesis and characterization of polyacrylonitrile-silver nanocomposites by γ-irradiation. Radia. Phys. Chem. 2001, 61, 89–91, doi:10.1016/S0969-806X(00)00383-2.
[47]
Chou, C.-W.; Hsu, S.-H.; Chang, H.; Tseng, S.-M.; Lin, H.-R. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanopartricles. Poly. Degrad. Stab. 2006, 91, 1017–1024, doi:10.1016/j.polymdegradstab.2005.08.001.
[48]
Xia, H.; Song, M. Preparation and characterization of polyurethane-carbon nanotube composites. Soft Matter 2005, 1, 386–394, doi:10.1039/b509038e.
[49]
Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, doi:10.1088/0957-4484/18/22/225103.
[50]
Abouzahr, S.; Wilks, G.L.; Ophir, Z.H. Structure property behaviour of segmented polymer/MDI/butandiol based urethane: Effect of composition ratio. Polymer 1982, 23, 1077–1086, doi:10.1016/0032-3861(82)90411-6.
[51]
Lee, B.S.; Chun, B.C.; Chung, Y.-C.; Sul, K.II.; Cho, J.W. Structure and thermo mechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 2001, 34, 6431–6437, doi:10.1021/ma001842l.
[52]
Kempa, T.; Farrer, R.A.; Giersig, M.; Fourkas, J.T. Photochemical synthesis and multiphoton luminescence of monodisperse silver nanocrystals. Plasmonics 2006, 1, 45–51, doi:10.1007/s11468-006-9008-5.
American Society for Testing and Materials. ASTM D2240-05, Standard Test Method for Rubber Property-Durometer Hardness; American Society for Testing and Materials: West Conshohocken, PA, USA, 2005. Available online: http://www.astm.org/Standards/D2240.htm (accessed on 1 September 2013).
[55]
American Society for Testing and Materials. ASTM D1004-66, Tear Resistance of Plastic Film and Sheeting; American Society for Testing and Materials: West Conshohoken, PA, USA, 1970.