In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
References
[1]
Brinker, M.R.; O’Connor, D.P. The incidence of fractures and dislocations referred for orthopaedic services in a capitated population. J. Bone Joint Surg. Am. 2004, 86, 290–297.
[2]
Smith, Z.A.; Fessler, R.G. Paradigm changes in spine surgery—Evolution of minimally invasive techniques. Nat. Rev. Neurol. 2012, 8, 443–450.
[3]
Glimcher, M.J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 2006, 64, 223–282, doi:10.2138/rmg.2006.64.8.
[4]
Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31, 37–47, doi:10.1016/S0020-1383(00)80022-4.
[5]
Bohner, M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine J. 2001, 10, S114–S121, doi:10.1007/s005860100276.
[6]
Dorozhkin, S.V. Calcium Orthophosphates: Applications in Nature, Biology, and Medicine; Pan Stanford: Singapore, Singapore, 2012; p. 850.
[7]
Dorozhkin, S.V. Calcium orthophosphates and human beings. A historical perspective from the 1770s until 1940. Biomatter 2012, 2, 53–70, doi:10.4161/biom.21340.
[8]
Dorozhkin, S.V. A detailed history of calcium orthophosphates from 1770s till 1950. Mater. Sci. Eng. C 2013, 33, 3085–3110, doi:10.1016/j.msec.2013.04.002.
[9]
Kingery, W.D., II. Cold setting properties. J. Am. Ceram. Soc. 1950, 33, 242–246, doi:10.1111/j.1151-2916.1950.tb14172.x.
[10]
Driskell, T.D.; Heller, A.L.; Koenigs, J.F. Dental Treatments. U.S. Patent No. 3913229, 21 October 1975.
[11]
LeGeros, R.Z.; Chohayeb, A.; Shulman, A. Apatitic calcium phosphates: Possible dental restorative materials. J. Dent. Res. 1982, 61, 343.
[12]
Brown, W.E.; Chow, L.C. A new calcium phosphate setting cement. J. Dent. Res. 1983, 62, 672.
[13]
Brown, W.E.; Chow, L.C. A New Calcium Phosphate Water-Setting Cement. In Cements Research Progress; Brown, P.W., Ed.; American Ceramic Society: Westerville, OH, USA, 1986; pp. 351–379.
[14]
Brown, W.E.; Chow, L.C. Dental Restorative Cement Pastes. U.S. Patent No. 4518430, 21 May 1985.
[15]
Gruninger, S.E.; Siew, C.; Chow, L.C.; O’Young, A.; Tsao, N.K.; Brown, W.E. Evaluation of the biocompatibility of a new calcium phosphate setting cement. J. Dent. Res. 1984, 63, 200.
[16]
Cheng, H.C.; Chu, K.T.; Teng, N.C.; Tsai, H.L.; Ou, K.L.; Ou, S.F. The effect of pH value on phase transformation of calcium phosphate cement. Int. J. Appl. Ceram. Technol. 2013, doi:10.1111/ijac.12020.
[17]
Driessens, F.C.M.; Planell, J.A.; Gil, F.J. Calcium Phosphate Bone Cements. In Encyclopedic Handbook of Biomaterials and Bioengineering, Part B, Applications; Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D., Schwarz, E.R., Eds.; Marcel Dekker: New York, NY, USA, 1995; Volume 2, pp. 855–877.
[18]
Tofighi, A. Calcium phosphate bone cement (CPBC): Development, commercialization and future challenges. Key Eng. Mater. 2012, 493–494, 349–354, doi:10.4028/www.scientific.net/KEM.493-494.349.
[19]
Schumache, M.; Hen?, A.; Rohnke, M.; Gelinsky, M. A novel and easy-to-prepare strontium (II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater. 2013, 9, 7536–7544.
[20]
Bolarinwa, A.; Gbureck, U.; Purnell, P.; Bold, M.; Grover, L.M. Cement casting of calcium pyrophosphate based bioceramics. Adv. Appl. Ceram. 2010, 109, 291–295.
[21]
Grover, L.M.; Wright, A.J.; Gbureck, U.; Bolarinwa, A.; Song, J.; Liu, Y.; Farrar, D.F.; Howling, G.; Rose, J.; Barralet, J.E. The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials 2013, 34, 6631–6637, doi:10.1016/j.biomaterials.2013.05.001.
[22]
Schmitz, J.P.; Hollinger, J.O.; Milan, S.B. Reconstruction of bone using calcium phosphate bone cements: A critical review. J. Oral Maxillofac. Surg. 1999, 57, 1122–1126, doi:10.1016/S0278-2391(99)90338-5.
[23]
Espanol, M.; Perez, R.A.; Montufar, E.B.; Marichal, C.; Sacco, A.; Ginebra, M.P. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 2009, 5, 2752–2762.
[24]
Cardoso, H.A.I.; Motisuke, M.; Zavaglia, C.A.C. The influence of three additives on the setting reaction kinetics and mechanical strength evolution of α-tricalcium phosphate cements. Key Eng. Mater. 2012, 493–494, 397–402.
[25]
Varma, N.P.; Garai, S.; Sinha, A. Synthesis of injectable and cohesive nano hydroxyapatite scaffolds. J. Mater. Sci. Mater. Med. 2012, 23, 913–919, doi:10.1007/s10856-012-4579-5.
[26]
Rabiee, S.M. Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride. Bull. Mater. Sci. 2013, 36, 171–174, doi:10.1007/s12034-013-0424-9.
[27]
Matsuya, S.; Maruta, M.; Tsuru, K.; Ishikawa, K. Preparation of carbonate apatite cement based on α-TCP. Key Eng. Mater. 2013, 529–530, 197–201.
[28]
Cahyanto, A.; Maruta, M.; Tsuru, K.; Matsuya, S.; Ishikawa, K. Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous. Key Eng. Mater. 2013, 529–530, 192–196.
[29]
Boroujeni, N.M.; Zhou, H.; Luchini, T.J.F.; Bhaduri, S.B. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. Mater. Sci. Eng. C 2013, 33, 4323–4330, doi:10.1016/j.msec.2013.06.029.
[30]
Chen, S.Y.; Ou, S.F.; Teng, N.C.; Kung, C.M.; Tsai, H.L.; Chu, K.T.; Ou, K.L. Phase transformation on bone cement: Monocalcium phosphate monohydrate into calcium-deficient hydroxyapatite during setting. Ceram. Int. 2013, 39, 2451–2455, doi:10.1016/j.ceramint.2012.08.097.
[31]
Chen, C.K.; Ju, C.P.; Lin, J.H.C. Setting solution concentration effect on properties of a TTCP/DCPA-derived calcium phosphate cement. J. Mater. Sci. Mater. Med. 2012, 23, 2109–2114, doi:10.1007/s10856-012-4700-9.
[32]
Bajpai, P.; Fuchs, C.; McCullum, D. Development of Tricalcium Orthophosphate Ceramic Cement. In Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications; Lemons, J., Ed.;. ASTM STP 953 American Society for Testing and Materials: Philadelphia, PA, USA, 1987; pp. 377–388.
[33]
Bohner, M.; Lemai?tre, J.; Ring, T.A. Effects of sulfate, pyrophosphate and citrate ions on the physiochemical properties of cements made of β-tricalcium phosphate-phosphoric acid-water mixtures. J. Am. Ceram. Soc. 1996, 79, 1427–1434, doi:10.1111/j.1151-2916.1996.tb08746.x.
[34]
Bohner, M.; van Landuyt, P.; Merkle, H.P.; Lemai?tre, J. Composition effects on the pH of a hydraulic calcium orthophosphate cement. J. Mater. Sci. Mater. Med. 1997, 8, 675–681, doi:10.1023/A:1018583706335.
[35]
Desai, T.R.; Bhaduri, S.B.; Tas, A.C. A Self-Setting, Monetite (CaHPO4) Cement for Skeletal Repair. In Advances in Bioceramics and Biocomposites II, Ceramic Engineering and Science Proceedings; Wereszczak, A., Lara-Curzio, E., Mizuno, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; Volume 27, pp. 61–69.
Wei, J.; Wang, J.; Liu, X.; Ma, J.; Liu, C.; Fang, J.; Wei, S. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration. Appl. Surf. Sci. 2011, 257, 7887–7892.
[38]
Gbureck, U.; Barralet, J.E.; Spatz, K.; Grover, L.M.; Thull, R. Ionic modification of calcium phosphate cement viscosity. Part I: Hypodermic injection and strength improvement of apatite cement. Biomaterials 2004, 25, 2187–2195, doi:10.1016/j.biomaterials.2003.08.066.
[39]
Cama, G.; Barberis, F.; Capurro, M.; di Silvio, L.; Deb, S. Tailoring brushite for in situ setting bone cements. Mater. Chem. Phys. 2011, 130, 1139–1145, doi:10.1016/j.matchemphys.2011.08.047.
[40]
Generosi, A.; Rau, J.V.; Komlev, V.S.; Albertini, V.R.; Fedotov, A.Y.; Barinov, S.M. Anomalous hardening behavior of a calcium phosphate bone cement. J. Phys. Chem. B 2010, 114, 973–979.
[41]
Rau, J.V.; Generosi, A.; Komlev, V.S.; Fosca, M.; Barinov, S.M.; Albertini, V.R. Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood. Dalton Trans. 2010, 39, 11412–11423, doi:10.1039/c0dt00731e.
[42]
Fosca, M.; Komlev, V.S.; Fedotov, A.Y.; Caminiti, R.; Rau, J.V. Structural study of octacalcium phosphate bone cement conversion in vitro. ACS Appl. Mater. Interfaces 2012, 4, 6202–6210.
[43]
Smirnov, V.V.; Rau, J.V.; Generosi, A.; Albertini, V.R.; Ferro, D.; Barinov, S.M. Elucidation of real-time hardening mechanisms of two novel high-strength calcium phosphate bone cements. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 74–83.
[44]
Paduraru, G.D.; Aelenei, N.; Luca, D.; Cimpoe?u, N. New brushite cements analysis. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 465–468.
[45]
Driessens, F.C.M.; Boltong, M.G.; Khairoun, I.; de Maeyer, E.A.P.; Ginebra, M.P.; Wenz, R.; Planell, J.A.; Verbeeck, R.M.H. Applied Aspects of Calcium Phosphate Bone Cement. In Biomaterials Engineering and Devices: Human Applications; Wise, D.L., Trantolo, D.J., Lewandrowski, K.U., Gresser, J.D., Cattaneo, M.V., Eds.; Humana Press: Totowa, NJ, USA, 2000; Volume 2, pp. 253–260.
[46]
Driessens, F.C.M.; Planell, J.A.; Boltong, M.G.; Khairoun, I.; Ginebra, M.P. Osteotransductive bone cements. Proc. Inst. Mech. Eng. H J. Eng. Med. 1998, 212, 427–435.
[47]
Frankenburg, E.P.; Goldstein, S.A.; Bauer, T.W.; Harris, S.A.; Poser, R.D. Biomechanical and histological evaluation of a calcium phosphate cement. J. Bone Joint Surg. Am. 1998, 80, 1112–1124.
[48]
Frayssinet, P.; Gineste, L.; Conte, P.; Fages, J.; Rouquet, N. Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 1998, 19, 971–977, doi:10.1016/S0142-9612(97)00163-4.
[49]
Rey, C.; Tofighi, A.; Mounic, S.; Combes, C.; Lee, D. Biomimetism and Calcium Phosphate Cements. In Actualités en Biomatériaux; Mainard, D., Louis, J.P., Eds.; Editions Romillat: Paris, France, 2002; Volume 6, pp. 27–37.
[50]
Combes, C.; Bareille, R.; Rey, C. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction. J. Biomed. Mater. Res. A 2006, 79A, 318–328, doi:10.1002/jbm.a.30795.
[51]
Ikenaga, M.; Hardouin, P.; Lemai?tre, J.; Andrianjatovo, H.; Flautre, B. Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: A comparison with porous biphasic calcium phosphate ceramics. J. Biomed. Mater. Res. 1998, 40, 139–144, doi:10.1002/(SICI)1097-4636(199804)40:1<139::AID-JBM16>3.0.CO;2-J.
[52]
Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements: Competitive drug carriers for the musculoskeletal system? Biomaterials 2006, 27, 2171–2177, doi:10.1016/j.biomaterials.2005.11.023.
[53]
Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Release 2006, 113, 102–110, doi:10.1016/j.jconrel.2006.04.007.
[54]
Bohner, M. New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures. Biomaterials 2004, 25, 741–749, doi:10.1016/S0142-9612(03)00573-8.
[55]
Fernández, E.; Vlad, M.D.; Gel, M.M.; Lopez, J.; Torres, R.; Cauich, J.V.; Bohner, M. Modulation of porosity in apatitic cements by the use of α-tricalcium phosphate-calcium sulphate dihydrate mixtures. Biomaterials 2005, 26, 3395–3404.
[56]
Hu, G.; Xiao, L.; Fu, H.; Bi, D.; Ma, H.; Tong, P. Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J. Porous Mater. 2010, 17, 605–613, doi:10.1007/s10934-009-9330-3.
[57]
Hu, G.; Xiao, L.; Fu, H.; Bi, D.; Ma, H.; Tong, P. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. J. Mater. Sci. Mater. Med. 2010, 21, 627–634, doi:10.1007/s10856-009-3885-z.
[58]
Nilsson, M.; Fernández, E.; Sarda, S.; Lidgren, L.; Planell, J.A. Characterization of a novel calcium phosphate/sulphate bone cement. J. Biomed. Mater. Res. 2002, 61, 600–607, doi:10.1002/jbm.10268.
[59]
Vlad, M.D.; ?indilar, E.V.; Mari?oso, M.L.; Poeatǎ, I.; Torres, R.; López, J.; Barracó, M.; Fernández, E. Osteogenic biphasic calcium sulphate dihydrate/iron-modified α-tricalcium phosphate bone cement for spinal applications: In vivo study. Acta Biomater. 2010, 6, 607–616, doi:10.1016/j.actbio.2009.07.010.
[60]
Ju, C.P.; Hung, S.H.; Chen, C.K.; Chen, W.L.; Lee, J.W.; Lin, R.M.; Chen, W.C.; Chern, J.H.L. Immersion-induced changes in structure and properties of a TTCP/DCPA/CSH cement. Mater. Chem. Phys. 2011, 130, 303–308, doi:10.1016/j.matchemphys.2011.06.051.
[61]
Zhou, W.; Xue, Y.; Ji, X.; Yin, G.; Zhang, N.; Ren, Y. A novel injectable and degradable calcium phosphate/calcium sulfate bone cement. Afr. J. Biotechnol. 2011, 10, 19449–19457.
[62]
Lin, J.H.C.; Hung, S.H.; Chen, W.L.; Chen, C.K.; Lin, J.L.; Ju, C.P. Properties of TTCP/DCPA/CSH cement immersed in Hanks’ solution. J. Med. Biol. Eng. 2012, 32, 201–204, doi:10.5405/jmbe.889.
[63]
Zima, A.; Paszkiewicz, Z.; Siek, D.; Czechowska, J.; ?lósarczyk, A. Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceram. Int. 2012, 38, 4935–4942, doi:10.1016/j.ceramint.2012.02.086.
[64]
Grover, L.M.; Gbureck, U.; Wright, A.J.; Tremaynec, M.; Barralet, J.E. Biologically mediated resorption of brushite cement in vitro. Biomaterials 2006, 27, 2178–2185, doi:10.1016/j.biomaterials.2005.11.012.
[65]
Grover, L.M.; Gbureck, U.; Wright, A.J.; Barralet, J.E. Cement formulations in the calcium phosphate H2O–H3PO4–H4P2O7 system. J. Am. Ceram. Soc. 2005, 88, 3096–3103, doi:10.1111/j.1551-2916.2005.00558.x.
[66]
Grover, L.M.; Gbureck, U.; Young, A.M.; Wright, A.J.; Barralet, J.E. Temperature dependent setting kinetics and mechanical properties of β-TCP–pyrophosphoric acid bone cement. J. Mater. Chem. 2005, 46, 4955–4962.
[67]
Oh, K.S.; Jeong, Y.K.; Yu, J.P.; Chae, S.K.; Kim, H.Y.; Lee, H.Y.; Jeun, S.S. Preparation and in vivo studies of β-TCP based bone cement containing polyphosphate. Key Eng. Mater. 2005, 284–286, 93–96, doi:10.4028/www.scientific.net/KEM.284-286.93.
Fernández, E.; Planell, J.A.; Best, S.M. Precipitation of carbonated apatite in the cement system α-Ca3(PO4)2–Ca(H2PO4)2–CaCO3. J. Biomed. Mater. Res. 1999, 47, 466–471, doi:10.1002/(SICI)1097-4636(19991215)47:4<466::AID-JBM2>3.0.CO;2-R.
[70]
Calafiori, A.R.; di Marco, G.; Martino, G.; Marotta, M. Preparation and characterization of calcium phosphate biomaterials. J. Mater. Sci. Mater. Med. 2007, 18, 2331–2338, doi:10.1007/s10856-007-3141-3.
[71]
Kon, M.; Hirakata, L.M.; Miyamoto, Y.; Kasahara, H.; Asaoka, K. Strengthening of calcium phosphate cement by compounding calcium carbonate whiskers. Dent. Mater. J. 2005, 24, 104–110, doi:10.4012/dmj.24.104.
[72]
Serraj, S.; Michailesco, P.; Margerit, J.; Bernard, B.; Boudeville, P. Study of a hydraulic calcium phosphate cement for dental applications. J. Mater. Sci. Mater. Med. 2002, 13, 125–131.
[73]
Nurit, L.; Margerit, J.; Terol, A.; Boudeville, P. pH-metric study of the setting reaction of monocalcium phosphate monohydrate/calcium oxide-based cements. J. Mater. Sci. Mater. Med. 2002, 13, 1007–1014, doi:10.1023/A:1020367900773.
[74]
Boudeville, P.; Serraj, S.; Leloup, J.M.; Margerit, J.; Pauvert, B.; Terol, A. Physical properties and self-setting mechanism of calcium phosphate cements from calcium bis-dihydrogenophosphate monohydrate and calcium oxide. J. Mater. Sci. Mater. Med. 1999, 10, 99–109, doi:10.1023/A:1008921104080.
[75]
Micha?lesco, P.; Kouassi, M.; Briak, H.E.; Armynot, A.; Boudeville, P. Antimicrobial activity and tightness of a DCPD–CaO-based hydraulic calcium phosphate cement for root canal filling. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 74, 760–767.
[76]
Briak, H.E.; Durand, D.; Nurit, J.; Munier, S.; Pauvert, B.; Boudeville, P. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 447–453, doi:10.1002/jbm.10257.
[77]
Briak, H.E.; Durand, D.; Boudeville, P. Study of a hydraulic DCPA/CaO-based cement for dental applications. J. Mater. Sci. Mater. Med. 2008, 19, 737–744, doi:10.1007/s10856-007-3198-z.
[78]
Takagi, S.; Chow, L.C.; Ishikawa, K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998, 19, 1593–1599, doi:10.1016/S0142-9612(97)00119-1.
[79]
Yang, Q.; Troczynski, T.; Liu, D.M. Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials 2002, 23, 2751–2760, doi:10.1016/S0142-9612(02)00010-8.
[80]
Hsu, H.C.; Chiu, C.Y.; Tuan, W.H.; Lee, H.Y. Structural stability of calcium phosphate cement during aging in water. Mater. Sci. Eng. C 2008, 28, 429–433, doi:10.1016/j.msec.2007.04.004.
[81]
Roemhildt, M.L.; McGee, T.D.; Wagner, S.D. Novel calcium phosphate composite bone cement, strength and bonding properties. J. Mater. Sci. Mater. Med. 2003, 14, 137–141, doi:10.1023/A:1022067729008.
[82]
Roemhildt, M.L.; Wagner, S.D.; McGee, T.D. Characterization of a novel calcium phosphate composite bone cement: Flow, setting, and aging properties. J. Mater. Sci. Mater. Med. 2006, 17, 1127–1132, doi:10.1007/s10856-006-0539-2.
[83]
Wang, X.; Ye, J.; Wang, Y.; Chen, L. Self-setting properties of a β-dicalcium silicate reinforced calcium phosphate cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82B, 93–99, doi:10.1002/jbm.b.30709.
[84]
Huan, Z.; Chang, J. Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82B, 352–359, doi:10.1002/jbm.b.30740.
[85]
Huan, Z.; Chang, J. Calcium-phosphate-silicate composite bone cement, self-setting properties and in vitro bioactivity. J. Mater. Sci. Mater. Med. 2009, 20, 833–841, doi:10.1007/s10856-008-3641-9.
[86]
Huan, Z.; Chang, J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009, 5, 1253–1264, doi:10.1016/j.actbio.2008.10.006.
[87]
Shen, Q.; Sun, J.; Wu, J.; Liu, C.; Chen, F. An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 141–148.
[88]
Morejón-Alonso, L.; Ferreira, O.J.B.; Carrodeguas, R.G.; dos Santos, L.A. Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 94–102, doi:10.1002/jbm.b.31926.
[89]
Zhou, S.; Ma, J.; Shen, Y.; Haapasalo, M.; Ruse, N.D.; Yang, Q.; Troczynski, T. In vitro studies of calcium phosphate silicate bone cements. J. Mater. Sci. Mater. Med. 2013, 24, 355–364, doi:10.1007/s10856-012-4794-0.
[90]
Guo, D.; Xu, K.; Zhao, X.; Han, Y. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005, 26, 4073–4083, doi:10.1016/j.biomaterials.2004.10.032.
[91]
Wang, X.; Ye, J. Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. J. Mater. Sci. Mater. Med. 2008, 19, 1183–1186, doi:10.1007/s10856-007-3209-0.
Jia, J.; Zhou, H.; Wei, J.; Jiang, X.; Hua, H.; Chen, F.; Wei, S.; Shin, J.W.; Liu, C. Development of magnesium calcium phosphate biocement for bone regeneration. J. R. Soc. Interface 2010, 7, 1171–1180, doi:10.1098/rsif.2009.0559.
[100]
Lu, J.; Wei, J.; Yan, Y.; Li, H.; Jia, J.; Wei, S.; Guo, H.; Xiao, T.; Liu, C. Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J. Mater. Sci. Mater. Med. 2011, 22, 607–615.
[101]
Pina, S.; Vieira, S.I.; Rego, P.; Torres, P.M.C.; da Cruz e Silva, O.A.B.; da Cruz e Silva, E.F.; Ferreira, J.M.F. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur. Cell Mater. 2010, 20, 162–177.
[102]
Pina, S.; Vieira, S.I.; Torres, P.M.C.; Goetz-Neunhoeffer, F.; Neubauer, J.; da Cruz e Silva, O.A.B.; da Cruz e Silva, E.F.; Ferreira, J.M.F. In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 414–420.
[103]
Doi, Y.; Shimizu, Y.; Moriwaki, Y.; Aga, M.; Iwanaga, H.; Shibutani, T.; Yamamoto, K.; Iwayama, Y. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials 2001, 22, 847–854, doi:10.1016/S0142-9612(00)00248-9.
Ni, G.X.; Lu, W.W.; Tang, B.; Ngan, A.H.W.; Chiu, K.Y.; Cheung, K.M.C.; Li, Z.Y.; Luk, K.D.K. Effect of weight-bearing on bone-bonding behavior of strontium-containing hydroxyapatite bone cement. J. Biomed. Mater. Res. Part A 2007, 83, 570–576.
[110]
Alkhraisat, M.H.; Marin?o, F.T.; Rodri?guez, C.R.; Jerez, L.B.; Cabarcos, E.L. Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomater. 2008, 4, 664–670, doi:10.1016/j.actbio.2007.12.001.
[111]
Yao, Z.P.; Liu, W.G.; Ni, G.X. Biology characteristics and clinical application of strontium substituted hydroxyapatite bone cement. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 7151–7154.
[112]
Pina, S.; Ferreira, J.M.F. Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials 2010, 3, 519–535, doi:10.3390/ma3010519.
[113]
Ni, G.X.; Lin, J.H.; Chiu, P.K.Y.; Li, Z.Y.; Lu, W.W. Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. J. Mater. Sci. Mater. Med. 2010, 21, 377–384, doi:10.1007/s10856-009-3866-2.
[114]
Fadeeva, I.V.; Barinov, S.M.; Komlev, V.S.; Fedotov, D.A.; Durisin, J.; Medvecky, L. Apatite formation in the reaction-setting mixture of Ca(OH)2–KH2PO4 system. J. Biomed. Mater. Res. A 2004, 70A, 303–308, doi:10.1002/jbm.a.30081.
[115]
Tas, A.C. Use of vaterite and calcite in forming calcium phosphate cement scaffolds. Ceram. Eng. Sci. Proc. 2008, 28, 135–150.
[116]
Cahyanto, A.; Tsuru, K.; Ishikawa, K. Carbonate apatite formation during the setting reaction of apatite cement. Ceram. Eng. Sci. Proc. 2013, 33, 7–10.
[117]
Fernández, E.; Vlad, M.D.; Hamcerencu, M.; Darie, A.; Torres, R.; Lopez, J. Effect of iron on the setting properties of α-TCP bone cements. J. Mater. Sci. 2005, 40, 3677–3682, doi:10.1007/s10853-005-0614-y.
[118]
Vlad, M.D.; del Valle, L.J.; Poeata, I.; Barraco?, M.; Lo?pez, J.; Torres, R.; Ferna?ndez, E. Injectable iron-modified apatitic bone cement intended for kyphoplasty, cytocompatibility study. J. Mater. Sci. Mater. Med. 2008, 19, 3575–3583, doi:10.1007/s10856-008-3513-3.
[119]
Cement. Available online: http://en.wikipedia.org/wiki/Cement (accessed on 15 September 2013).
[120]
Burguera, E.F.; Xu, H.H.K.; Weir, M.D. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 126–134, doi:10.1002/jbm.b.30403.
[121]
Burguera, E.F.; Guitian, F.; Chow, L.C. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement. J. Biomed. Mater. Res. A 2004, 71, 275–282, doi:10.1002/jbm.a.30153.
[122]
Kim, S.Y.; Jeon, S.H. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J. Ind. Eng. Chem. 2012, 18, 128–136, doi:10.1016/j.jiec.2011.11.001.
[123]
Driessens, F.C.M.; Boltong, M.G.; Bermudez, O.; Planell, J.A. Formulation and setting times of some calcium orthophosphate cements, a pilot study. J. Mater. Sci. Mater. Med. 1993, 4, 503–508, doi:10.1007/BF00120130.
[124]
Chow, L.C.; Markovic, M.; Takagi, S. Calcium Phosphate Cements. In Cements Research Progress; Struble, L.J., Ed.; American Ceramic Society: Westerville, OH, USA, 1998. Chapter 7; pp. 215–238.
[125]
Driessens, F.C.M.; Boltong, M.G.; Bermudez, O.; Planell, J.A.; Ginebra, M.P.; Fernández, E. Effective formulations for the preparation of calcium phosphate bone cements. J. Mater. Sci. Mater. Med. 1994, 5, 164–170, doi:10.1007/BF00053338.
[126]
Kurashina, K.; Hirano, M.; Kotani, A.; Klein, C.P.A.T.; de Groot, K. In vivo study of calcium phosphate cements, implantation of an α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 1997, 18, 539–543, doi:10.1016/S0142-9612(96)00162-7.
[127]
Friedman, C.D.; Costantino, P.D.; Takagi, S.; Chow, L.C. BoneSourceTM hydroxyapatite cement, a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 1998, 43, 428–432, doi:10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0.
[128]
Khairoun, I.; Boltong, M.G.; Driessens, F.C.M.; Planell, J.A. Effect of calcium carbonate on the compliance of apatitic calcium phosphate bone cement. Biomaterials 1997, 18, 1535–1539.
[129]
Fernández, E.; Gil, F.J.; Best, S.M.; Ginebra, M.P.; Driessens, F.C.M.; Planell, J.A. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-α-Ca3(PO4)2 system, compressive strength and microstructural development. J. Biomed. Mater. Res. 1998, 41, 560–567, doi:10.1002/(SICI)1097-4636(19980915)41:4<560::AID-JBM7>3.0.CO;2-A.
[130]
Fukase, Y.; Eanes, E.D.; Takagi, S.; Chow, L.C.; Brown, W.E. Setting reactions and compressive strengths of calcium phosphate cements. J. Dent. Res. 1990, 69, 1852–1856, doi:10.1177/00220345900690121201.
Ishikawa, K.; Miyamoto, Y.; Kon, M.; Nagayama, M.; Asaoka, K. Non-decay type fast-setting calcium orthophosphate cement composite with sodium alginate. Biomaterials 1995, 16, 527–532, doi:10.1016/0142-9612(95)91125-I.
[133]
Xu, H.H.K.; Quinn, J.B.; Takagi, S.; Chow, L.C. Processing and properties of strong and non-rigid calcium phosphate cement. J. Dent. Res. 2002, 81, 219–224, doi:10.1177/154405910208100315.
[134]
Lee, Y.K.; Lim, B.S.; Kim, C.W. Mechanical properties of calcium phosphate based dental filling and regeneration materials. J. Oral Rehabil. 2003, 30, 418–425, doi:10.1046/j.1365-2842.2003.01061.x.
[135]
Ginebra, M.P.; Fernández, E.; de Mayer, E.A.P.; Verbeeck, R.M.H.; Boltong, M.G.; Ginebra, J.; Driessens, F.C.M.; Planell, J.A. Setting reaction and hardening of an apatitic calcium phosphate cement. J. Dent. Res. 1997, 76, 905–912, doi:10.1177/00220345970760041201.
[136]
Liu, C.; Shen, W.; Gu, Y.; Hu, L. Mechanism of the hardening process for a hydroxyapatite cement. J. Biomed. Mater. Res. 1997, 35, 75–80, doi:10.1002/(SICI)1097-4636(199704)35:1<75::AID-JBM7>3.0.CO;2-J.
[137]
Driessens, F.C.M.; de Mayer, E.A.P.; Fernández, E.; Boltong, M.G.; Berger, G.; Verbeeck, R.M.H.; Ginebra, M.P.; Planell, J.A. Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite. Bioceramics 1996, 9, 231–234.
[138]
Lemai?tre, J. Injectable calcium phosphate hydraulic cements: New developments and potential applications. Inn. Tech. Biol. Med. 1995, 16, 109–120.
[139]
Neira, I.S.; Kolen’ko, Y.V.; Lebedev, O.I.; van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitián, F. Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 2124–2132, doi:10.1016/j.msec.2009.04.011.
[140]
Kawakami, T.; Antoh, M.; Hasegawa, H.; Yamagishi, T.; Ito, M.; Eda, S. Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials 1992, 13, 759–763, doi:10.1016/0142-9612(92)90014-F.
[141]
Ta?ag, M.A.; Yano, K.; Hosokawa, K. Orbital floor reconstruction using calcium phosphate cement paste: An animal study. Plast. Reconstr. Surg. 2004, 114, 1826–1831, doi:10.1097/01.PRS.0000143579.68771.55.
[142]
Hatoko, M.; Tada, H.; Tanaka, A.; Yurugi, S.; Niitsuma, K.; Iioka, H. The use of calcium phosphate cement paste for the correction of the depressed nose deformity. J. Craniofac. Surg. 2005, 16, 327–331, doi:10.1097/00001665-200503000-00024.
[143]
Ta?ag, M.A.; Madura, T.; Yano, K.; Hosokawa, K. Use of calcium phosphate cement paste in orbital volume augmentation. Plast. Reconstr. Surg. 2006, 117, 1186–1193, doi:10.1097/01.prs.0000204582.76322.05.
[144]
Meng, D.; Xie, Q.F.; Xiao, J.J. Effects of two calcium phosphate cement pastes on osteoblasts during solidification. J. Clin. Rehabil. Tissue Eng. Res. 2009, 13, 471–474.
[145]
Chen, F.; Liu, C.; Wei, J.; Chen, X.; Zhao, Z.; Gao, Y. Preparation and characterization of injectable calcium phosphate cement paste modified by polyethylene glycol-6000. Mater. Chem. Phys. 2011, 125, 818–824, doi:10.1016/j.matchemphys.2010.09.050.
[146]
Ishikawa, K.; Miyamoto, Y.; Takechi, M.; Toh, T.; Kon, M.; Nagayama, M.; Asaoka, K. Non-decay type fast-setting calcium phosphate cement: Hydroxyapatite putty containing an increased amount of sodium alginate. J. Biomed. Mater. Res. 1997, 36, 393–399, doi:10.1002/(SICI)1097-4636(19970905)36:3<393::AID-JBM14>3.0.CO;2-F.
[147]
Ishikawa, K.; Miyamoto, Y.; Takechi, M.; Ueyama, Y.; Suzuki, K.; Nagayama, M.; Matsumura, T. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty. J. Biomed. Mater. Res. 1999, 44, 322–329, doi:10.1002/(SICI)1097-4636(19990305)44:3<322::AID-JBM11>3.0.CO;2-S.
[148]
Momota, Y.; Miyamoto, Y.; Ishikawa, K.; Takechi, M.; Yuasa, T.; Tatehara, S.; Nagayama, M. Effects of neutral sodium hydrogen phosphate on the setting property and hemostatic ability of hydroxyapatite putty as a local hemostatic agent for bone. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 69, 99–103.
[149]
Bohner, M. Design of ceramic-based cements and putties for bone graft substitution. Eur. Cell Mater. 2010, 20, 1–12.
[150]
Chow, L.C. Next generation calcium phosphate-based biomaterials. Dent. Mater. J. 2009, 28, 1–10, doi:10.4012/dmj.28.1.
[151]
Ishikawa, K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials 2010, 3, 1138–1155, doi:10.3390/ma3021138.
[152]
Xia, Z.; Grover, L.M.; Huang, Y.; Adamopoulos, I.E.; Gbureck, U.; Triffitt, J.T.; Shelton, R.M.; Barralet, J.E. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials 2006, 27, 4557–4565, doi:10.1016/j.biomaterials.2006.04.030.
[153]
Khairoun, I.; Boltong, M.G.; Driessens, F.C.M.; Planell, J.A. Limited compliance of some apatitic calcium phosphate bone cements with clinical requirements. J. Mater. Sci. Mater. Med. 1998, 9, 667–671, doi:10.1023/A:1008939710282.
[154]
Monma, H.; Makishima, A.; Mitomo, M.; Ikegami, T. Hydraulic properties of the tricalcium phosphate–dicalcium phosphate mixture. J. Ceram. Soc. Jpn. 1988, 96, 878–880, doi:10.2109/jcersj.96.878.
[155]
Bermudez, O.; Boltong, M.G.; Driessens, F.C.M.; Planell, J.A. Development of an octacalcium phosphate cement. J. Mater. Sci. Mater. Med. 1994, 5, 144–146, doi:10.1007/BF00053334.
[156]
Sena, M.; Yamashita, Y.; Nakano, Y.; Ohgaki, M.; Nakamura, S.; Yamashita, K.; Takagi, Y. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 749–755, doi:10.1016/j.tripleo.2003.10.029.
[157]
Markovic, M.; Chow, L.C. An octacalcium phosphate forming cement. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 257–265, doi:10.6028/jres.115.019.
[158]
Lacout, J.; Mejdoubi, E.; Hamad, M. Crystallization mechanisms of calcium orthophosphate cement for biological uses. J. Mater. Sci. Mater. Med. 1996, 7, 371–374, doi:10.1007/BF00154552.
[159]
Song, Y.; Feng, Z.; Wang, T. In situ study on the curing process of calcium phosphate bone cement. J. Mater. Sci. Mater. Med. 2007, 18, 1185–1193, doi:10.1007/s10856-007-0138-x.
[160]
Weiss, D.D.; Sachs, M.A.; Woodard, C.R. Calcium phosphate bone cements: A comprehensive review. J. Long Term Eff. Med. Implant. 2003, 13, 41–47, doi:10.1615/JLongTermEffMedImplants.v13.i1.50.
[161]
Bohner, M. Resorbable biomaterials as bone graft substitutes. Mater. Today 2010, 13, 24–30, doi:10.1016/S1369-7021(10)70014-6.
[162]
Fernández, E.; Gil, F.J.; Ginebra, M.P.; Driessens, F.C.M.; Planell, J.A.; Best, S.M. Calcium phosphate bone cements for clinical applications. Part I: Solution chemistry. J. Mater. Sci. Mater. Med. 1999, 10, 169–176, doi:10.1023/A:1008937507714.
[163]
Hatim, Z.; Freche, M.; Keribech, A.; Lacout, J.L. The setting mechanism of a phosphocalcium biological cement. Ann. Chim. Sci. Mater. 1998, 23, 65–68, doi:10.1016/S0151-9107(98)80024-X.
[164]
Ishikawa, K.; Asaoka, K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J. Biomed. Mater. Res. 1995, 29, 1537–1543, doi:10.1002/jbm.820291210.
[165]
Chow, L.C. Development of self-setting calcium phosphate cements. J. Ceram. Soc. Jpn. 1991, 99, 954–964, doi:10.2109/jcersj.99.954.
[166]
Chow, L.C. Calcium phosphate cements: Chemistry, properties and applications. Mater. Res. Soc. Symp. Proc. 2000, 599, 27–37, doi:10.1557/PROC-599-27.
[167]
Chow, L.C. Calcium Phosphate Cements. In Octacalcium Phosphate; Chow, L.C., Eanes, E.D., Eds.;. Monographs in Oral Science Karger: Basel, Switzerland, 2001; Volume 18, pp. 148–163.
[168]
Brown, P.W.; Fulmer, M.T. Kinetics of hydroxyapatite formation at low temperature. J. Am. Ceram. Soc. 1991, 74, 934–940, doi:10.1111/j.1151-2916.1991.tb04324.x.
[169]
TenHuisen, K.S.; Brown, P.W. The formation of hydroxyapatite-ionomer cements at 38 °C. J. Dent. Res. 1994, 3, 598–606.
[170]
Ishikawa, K.; Takagi, S.; Chow, L.C.; Suzuki, K. Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. J. Biomed. Mater. Res. 1999, 46, 504–510, doi:10.1002/(SICI)1097-4636(19990915)46:4<504::AID-JBM8>3.0.CO;2-H.
[171]
Matsuya, S.; Takagi, S.; Chow, L.C. Effect of mixing ratio and pH on the reaction between Ca4(PO4)2O and CaHPO4. J. Mater. Sci. Mater. Med. 2000, 11, 305–311, doi:10.1023/A:1008961314500.
[172]
Burguera, E.F.; Guitian, F.; Chow, L.C. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement. J. Biomed. Mater. Res. Part A 2008, 85, 674–683, doi:10.1002/jbm.a.31478.
[173]
Lemai?tre, J.; Mirtchi, A.A.; Mortier, A. Calcium phosphate cements for medical use: State of the art and perspectives of development. Silic. Ind. 1987, 9–10, 141–146.
[174]
Mirtchi, A.A.; Lemai?tre, J.; Terao, N. Calcium phosphate cements: Study of the β-tricalcium phosphate—Monocalcium phosphate system. Biomaterials 1989, 10, 475–480, doi:10.1016/0142-9612(89)90089-6.
[175]
Fernández, E.; Gil, F.J.; Best, S.M.; Ginebra, M.P.; Driessens, F.C.M.; Planell, J.A. The cement setting reaction in the CaHPO4-α-Ca3(PO4)2 system: An X-ray diffraction study. J. Biomed. Mater. Res. 1998, 42, 403–406, doi:10.1002/(SICI)1097-4636(19981205)42:3<403::AID-JBM8>3.0.CO;2-N.
[176]
Fernández, E.; Gil, F.J.; Ginebra, M.P.; Driessens, F.C.M.; Planell, J.A.; Best, S.M. Production and characterisation of new calcium phosphate bone cements in the CaHPO4-α-Ca3(PO4)2 system: pH, workability and setting times. J. Mater. Sci. Mater. Med. 1999, 10, 223–230.
[177]
Barralet, J.E.; Lilley, K.J.; Grover, L.M.; Farrar, D.F.; Ansell, C.; Gbureck, U. Cements from nanocrystalline hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 407–411, doi:10.1023/B:JMSM.0000021111.48592.ab.
[178]
Lilley, K.J.; Gbureck, U.; Wright, A.J.; Farrar, D.F.; Barralet, J.E. Cement from nanocrystalline hydroxyapatite: Effect of calcium phosphate ratio. J. Mater. Sci. Mater. Med. 2005, 16, 1185–1190, doi:10.1007/s10856-005-4727-2.
[179]
Alge, D.L.; Cruz, G.S.; Goebel, W.S.; Chu, T.M.G. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation. Biomed. Mater. 2009, 4, 025016, doi:10.1088/1748-6041/4/2/025016.
[180]
Alge, D.L.; Goebel, W.S.; Chu, T.M.G. In vitro degradation and cytocompatibility of dicalcium phosphate dihydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 595–602, doi:10.1002/jbm.b.31938.
[181]
Wang, X.; Ye, J.; Wang, Y.; Wu, X.; Bai, B. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J. Biomed. Mater. Res. Part A 2007, 81, 781–790, doi:10.1002/jbm.a.31059.
[182]
Wang, X.; Ye, J.; Wang, H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 78, 259–264, doi:10.1002/jbm.b.30481.
[183]
Tofighi, A.; Schaffer, K.; Palazzolo, R. Calcium phosphate cement (CPC): A critical development path. Key Eng. Mater. 2008, 361–363, 303–306, doi:10.4028/www.scientific.net/KEM.361-363.303.
[184]
De Maeyer, E.A.P.; Verbeeck, R.M.H.; Vercruysse, C.W.J. Conversion of octacalcium phosphate in calcium phosphate cements. J. Biomed. Mater. Res. 2000, 52, 95–106, doi:10.1002/1097-4636(200010)52:1<95::AID-JBM12>3.0.CO;2-X.
[185]
Nakano, Y.; Ohgaki, M.; Nakamura, S.; Takagi, Y.; Yamashita, K. In vitro and in vivo characterization and mechanical properties of α-TCP/OCP settings. Bioceramics 1999, 12, 315–318.
[186]
Nakano, Y. Preparation and characterization of porous octacalcium phosphate setting improved by α-tricalcium phosphate additive. J. Dent. Mater. 2000, 19, 65–76, doi:10.4012/dmj.19.65.
[187]
Wang, X.; Ye, J.; Wang, Y. Hydration mechanism of a novel PCCP + DCPA cement system. J. Mater. Sci. Mater. Med. 2008, 19, 813–816, doi:10.1007/s10856-006-0029-6.
[188]
Wang, X.; Ye, J. Exothermal behavior during the hydration of the PCCP + DCPA system cement. Mater. Sci. Forum 2009, 610–613, 1255–1258, doi:10.4028/www.scientific.net/MSF.610-613.1255.
[189]
He, F.; Ye, J. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Sci. Technol. Adv. Mater. 2013, 14, 045010:1–045010:11.
[190]
Kim, Y.B.; Lee, B.M.; Lee, M.C.; Noh, I.; Lee, S.J.; Kim, S.S. Preparation and characterization of calcium phosphate cement of α-tricalcium phosphate-tetracalcium phosphate-dicalcium phosphate system incorporated with poly(γ-glutamic acid). Macromol. Res. 2013, 21, 892–898, doi:10.1007/s13233-013-1109-3.
[191]
Lopez-Heredia, M.A.; Bongio, M.; Bohner, M.; Cuijpers, V.; Winnubst, L.A.; van Dijk, N.; Wolke, J.G.; van den Beucken, J.J.; Jansen, J.A. Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases. Acta Biomater. 2012, 8, 3500–3508, doi:10.1016/j.actbio.2012.05.033.
[192]
Zoulgami, M.; Lucas, A.; Briard, P.; Gaudé, J. A self-setting single-component calcium phosphate cement. Biomaterials 2001, 22, 1933–1937, doi:10.1016/S0142-9612(00)00384-7.
[193]
Knaack, D.; Goad, M.E.; Aiolova, M.; Rey, C.; Tofighi, A.; Chakravarthy, P.; Lee, D.D. Resorbable calcium phosphate bone substitute. J. Biomed. Mater. Res. 1998, 43, 399–409, doi:10.1002/(SICI)1097-4636(199824)43:4<399::AID-JBM7>3.0.CO;2-J.
[194]
Tofighi, A.; Mounic, S.; Chakravarthy, P.; Rey, C.; Lee, D. Setting reactions involved in injectable cements based on amorphous calcium phosphate. Key Eng. Mater. 2001, 192–195, 769–772, doi:10.4028/www.scientific.net/KEM.192-195.769.
[195]
Monma, H.; Kanazawa, T. Hydration of α-tricalcium phosphate. J. Ceram. Soc. Jpn. 2000, 108, 575–580, doi:10.2109/jcersj.108.1258_575.
[196]
Fernández, E.; Ginebra, M.P.; Boltong, M.G.; Driessens, F.C.M.; Ginebra, J.; de Maeyer, E.A.P.; Verbeeck, R.M.H.; Planell, J.A. Kinetic study of the setting reaction of a calcium phosphate bone cement. J. Biomed. Mater. Res. 1996, 32, 367–374, doi:10.1002/(SICI)1097-4636(199611)32:3<367::AID-JBM9>3.0.CO;2-Q.
[197]
Gbureck, U.; Barralet, J.E.; Radu, L.; Klinger, H.G.; Thull, R. Amorphous α-tricalcium phosphate, preparation and aqueous setting reaction. J. Am. Ceram. Soc. 2004, 87, 1126–1132, doi:10.1111/j.1551-2916.2004.01126.x.
[198]
Bohner, M.; Malsy, A.K.; Camire, C.L.; Gbureck, U. Combining particle size distribution and isothermal calorimetry data to determine the reaction kinetics of α-tricalcium phosphate–water mixtures. Acta Biomater. 2006, 2, 343–348, doi:10.1016/j.actbio.2006.01.003.
[199]
Brunner, T.J.; Grass, R.N.; Bohner, M.; Stark, W.J. Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J. Mater. Chem. 2007, 38, 4072–4078.
[200]
Alves, H.L.R.; dos Santos, L.A.; Bergmann, C.P. Injectability evaluation of tricalcium phosphate bone cement. J. Mater. Sci. Mater. Med. 2008, 19, 2241–2246, doi:10.1007/s10856-007-3329-6.
[201]
Jack, V.; Buchanan, F.J.; Dunne, N.J. Particle attrition of α-tricalcium phosphate, effect on mechanical, handling, and injectability properties of calcium phosphate cements. Proc. Inst. Mech. Eng. H J. Eng. Med. 2008, 222, 19–28.
[202]
Oh, S.A.; Lee, G.S.; Park, J.H.; Kim, H.W. Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 3019–3027, doi:10.1007/s10856-010-4152-z.
Gbureck, U.; Grolms, O.; Barralet, J.E.; Grover, L.M.; Thull, R. Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 2003, 24, 4123–4131, doi:10.1016/S0142-9612(03)00283-7.
[205]
Gbureck, U.; Barralet, J.E.; Hofmann, M.P.; Thull, R. Nanocrystalline tetracalcium phosphate cement. J. Dent. Res. 2004, 83, 425–428, doi:10.1177/154405910408300514.
[206]
Gbureck, U.; Barralet, J.E.; Hofmann, M.P.; Thull, R. Mechanical activation of tetracalcium phosphate. J. Am. Ceram. Soc. 2004, 87, 311–313, doi:10.1111/j.1551-2916.2004.00311.x.
[207]
Tsai, C.H.; Ju, C.P.; Lin, J.H.C. Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats. J. Mater. Sci. Mater. Med. 2008, 19, 2407–2415, doi:10.1007/s10856-006-0055-4.
[208]
Tsai, C.H.; Lin, R.M.; Ju, C.P.; Lin, J.H.C. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 2008, 29, 984–993, doi:10.1016/j.biomaterials.2007.10.014.
[209]
Tsai, C.H.; Lin, J.H.C.; Ju, C.P. γ-radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 80, 244–252.
[210]
Vlad, M.D.; Gómez, S.; Barracó, M.; López, J.; Fernández, E. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements. J. Mater. Sci. Mater. Med. 2012, 23, 2081–2090, doi:10.1007/s10856-012-4686-3.
[211]
Koshino, T.; Kubota, W.; Morii, T. Bone formation as a reaction to hydraulic hydroxyapatite thermal decomposition product used as bone cement in rabbits. Biomaterials 1995, 16, 125–128, doi:10.1016/0142-9612(95)98274-I.
[212]
Chow, L.C.; Markovic, M.; Frukhtbeyn, S.A.; Takagi, S. Hydrolysis of tetracalcium phosphate under a near-constant composition condition—Effects of pH and particle size. Biomaterials 2005, 26, 393–401, doi:10.1016/j.biomaterials.2004.02.039.
[213]
TenHuisen, K.S.; Brown, P.W. Formation of calcium-deficient hydroxyapatite from α-tricalcium phosphate. Biomaterials 1998, 19, 2209–2217, doi:10.1016/S0142-9612(98)00131-8.
[214]
Ginebra, M.P.; Fernández, E.; Driessens, F.C.M.; Planell, J.A. Modeling of the hydrolysis of α-TCP. J. Am. Ceram. Soc. 1999, 82, 2808–2812.
[215]
Durucan, C.; Brown, P.W. α-tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000, 11, 365–371, doi:10.1023/A:1008934024440.
[216]
Durucan, C.; Brown, P.W. Kinetic model for α-tricalcium phosphate hydrolysis. J. Am. Ceram. Soc. 2002, 85, 2013–2018, doi:10.1111/j.1151-2916.2002.tb00397.x.
[217]
Fulmer, M.T.; Brown, P.W. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 197–202, doi:10.1023/A:1008832006277.
[218]
Ginebra, M.P.; Driessens, F.C.M.; Planell, J.A. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: A kinetic analysis. Biomaterials 2004, 25, 3453–3462, doi:10.1016/j.biomaterials.2003.10.049.
[219]
Ginebra, M.P.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 2012, 64, 1090–1110, doi:10.1016/j.addr.2012.01.008.
[220]
Tas, A.C. Porous, biphasic CaCO3-calcium phosphate biomedical cement scaffolds from calcite (CaCO3) powder. Int. J. Appl. Ceram. Technol. 2007, 4, 152–163, doi:10.1111/j.1744-7402.2007.02122.x.
[221]
Liu, C.; Huang, Y.; Chen, J. The physicochemical properties of the solidification of calcium phosphate cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 69, 73–78.
[222]
Liu, C.; Gai, W.; Pan, S.; Liu, Z. The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials 2003, 24, 2995–3003, doi:10.1016/S0142-9612(03)00125-X.
[223]
Charrière, E.; Terrazzoni, S.; Pittet, C.; Mordasini, P.; Dutoit, M.; Lemai?tre, J.; Zysset, P. Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 2001, 22, 2937–2945, doi:10.1016/S0142-9612(01)00041-2.
[224]
Morgan, H.; Dauskardt, R.H. Notch strength insensitivity of self-setting hydroxyapatite bone cements. J. Mater. Sci. Mater. Med. 2003, 14, 647–653, doi:10.1023/A:1024035426820.
[225]
Von Gonten, A.S.; Kelly, J.R.; Antonucci, J.M. Load-bearing behavior of a simulated craniofacial structure fabricated from a hydroxyapatite cement and bioresorbable fiber-mesh. J. Mater. Sci. Mater. Med. 2000, 11, 95–100, doi:10.1023/A:1008992900829.
[226]
Gisep, A.; Kugler, S.; Wahl, D.; Rahn, B. The mechanical characterization of a bone defect model filled with ceramic cements. J. Mater. Sci. Mater. Med. 2004, 15, 1065–1071, doi:10.1023/B:JMSM.0000046387.70323.41.
[227]
Takagi, S.; Chow, L.C.; Markovic, M.; Friedman, C.D.; Costantino, P.D. Morphological and phase characterizations of retrieved calcium phosphate cement implants. J. Biomed. Mater. Res. Appl. Biomater. 2001, 58, 36–41, doi:10.1002/1097-4636(2001)58:1<36::AID-JBM50>3.0.CO;2-#.
[228]
Ambard, A.J.; Mueninghoff, L. Calcium phosphate cement: Review of mechanical and biological properties. J. Prosthodont. 2006, 15, 321–328, doi:10.1111/j.1532-849X.2006.00129.x.
[229]
Kenny, S.M.; Buggy, M. Bone cements and fillers: A review. J. Mater. Sci. Mater. Med. 2003, 14, 923–938, doi:10.1023/A:1026394530192.
[230]
Bohner, M.; Gbureck, U.; Barralet, J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials 2005, 26, 6423–6429, doi:10.1016/j.biomaterials.2005.03.049.
[231]
Lewis, G. Injectable bone cements for use in vertebroplasty and kyphoplasty, state-of-the-art review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 76, 456–468, doi:10.1002/jbm.b.30398.
[232]
Takagi, S.; Frukhtbeyn, S.; Chow, L.C.; Sugawara, A.; Fujikawa, K.; Ogata, H.; Hayashi, M.; Ogiso, B. In vitro and in vivo characteristics of fluorapatite-forming calcium phosphate cements. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 267–276, doi:10.6028/jres.115.020.
[233]
Wei, J.; Wang, J.; Shan, W.; Liu, X.; Ma, J.; Liu, C.; Fang, J.; Wei, S. Development of fluorapatite cement for dental enamel defects repair. J. Mater. Sci. Mater. Med. 2011, 22, 1607–1614, doi:10.1007/s10856-011-4327-2.
[234]
Constantz, B.R.; Ison, I.C.; Fulmer, M.T.; Poser, R.D.; Smith, S.T.; van Wagoner, M.; Ross, J.; Goldstein, S.A.; Jupiter, J.B.; Rosenthal, D.I. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995, 267, 1796–1799.
[235]
Bohner, M. Reactivity of calcium phosphate cements. J. Mater. Chem. 2007, 38, 3980–3986, doi:10.1039/b706411j.
[236]
Bohner, M.; Brunner, T.J.; Stark, W.J. Controlling the reactivity of calcium phosphate cements. J. Mater. Chem. 2008, 18, 5669–5675, doi:10.1039/b811953h.
[237]
Yuan, H.; Li, Y.; de Bruijn, J.D.; de Groot, K.; Zhang, X. Tissue responses of calcium phosphate cement, a study in dogs. Biomaterials 2000, 21, 1283–1290, doi:10.1016/S0142-9612(00)00016-8.
[238]
Takechi, M.; Miyamoto, Y.; Ishikawa, K.; Toh, T.; Yuasa, T.; Nagayama, M.; Suzuki, K. Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials 1998, 19, 2057–2063, doi:10.1016/S0142-9612(98)00114-8.
[239]
Fulmer, M.T.; Brown, P.W. Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation. J. Biomed. Mater. Res. 1993, 27, 1095–1102, doi:10.1002/jbm.820270815.
[240]
Otsuka, M.; Matsuda, Y.; Suwa, Y.; Fox, J.L.; Higuchi, W.I. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J. Biomed. Mater. Res. 1995, 29, 25–32, doi:10.1002/jbm.820290105.
[241]
Liu, C.; Shao, H.; Chen, F.; Zheng, H. Effects of granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 2003, 24, 4103–4113, doi:10.1016/S0142-9612(03)00238-2.
[242]
Chen, W.C.; Lin, J.H.C.; Ju, C.P. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J. Biomed. Mater. Res. 2003, 64, 664–671, doi:10.1002/jbm.a.10250.
[243]
Fernández, E.; Gil, F.J.; Ginebra, M.P.; Driessens, F.C.M.; Planell, J.A.; Best, S.M. Calcium phosphate bone cements for clinical applications. Part II: Precipitate formation during setting reactions. J. Mater. Sci. Mater. Med. 1999, 10, 177–183, doi:10.1023/A:1008989525461.
[244]
Brown, W.E. Crystal growth of bone mineral. Clin. Orthop. Rel. Res. 1966, 44, 205–220.
[245]
Tung, M.S.; Brown, W.E. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif. Tissue Int. 1983, 35, 783–790, doi:10.1007/BF02405124.
[246]
Brown, W.E.; Eidelman, N.; Tomazic, B.B. Octacalcium phosphate as a precursor in biomineral formation. Adv. Dent. Res. 1987, 1, 306–313.
[247]
Constantz, B.R.; Barr, B.M.; Ison, I.C.; Fulmer, M.T.; Baker, J.; McKinney, L.A.; Goodman, S.B.; Gunasekaren, S.; Delaney, D.C.; Ross, J.; et al. Histological, chemical and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J. Biomed. Mater. Res. Appl. Biomater. 1998, 43, 451–461, doi:10.1002/(SICI)1097-4636(199824)43:4<451::AID-JBM13>3.0.CO;2-Q.
[248]
Tamimi, F.; Sheikh, Z.; Barralet, J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomater. 2012, 8, 474–487, doi:10.1016/j.actbio.2011.08.005.
[249]
Elliott, J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Elsevier: Amsterdam, The Netherlands, 1994; p. 404.
[250]
Legrand, A.P.; Sfihi, H.; Lequeux, N.; Lemai?tre, J. 31P solid-state NMR study of the chemical setting process of a dual-paste injectable brushite cements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 46–54.
[251]
Bohner, M.; Merkle, H.P.; van Landuyt, P.; Trophardy, G.; Lemai?tre, J. Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement. J. Mater. Sci. Mater. Med. 2000, 11, 111–116.
[252]
Vereecke, G.; Lemai?tre, J. Calculation of the solubility diagrams in the system Ca(OH)2–H3PO4–KOH–HNO3–CO2–H2O. J. Cryst. Growth 1990, 104, 820–832, doi:10.1016/0022-0248(90)90108-W.
[253]
Klein, C.P.; de Groot, K.; Driessen, A.A.; van der Lubbe, H.B. Interaction of biodegradable β-whitlockite ceramics with bone tissue, an in vivo study. Biomaterials 1985, 6, 189–192, doi:10.1016/0142-9612(85)90008-0.
Apelt, D.; Theiss, F.; El-Warrak, A.O.; Zlinszky, K.; Bettschart-Wolfisberger, R.; Bohner, M.; Matter, S.; Auer, J.A.; von Rechenberg, B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004, 25, 1439–1451, doi:10.1016/j.biomaterials.2003.08.073.
[256]
Barralet, J.E.; Grover, L.M.; Gbureck, U. Ionic modification of calcium phosphate cement viscosity. Part II: Hypodermic injection and strength improvement of brushite cement. Biomaterials 2004, 25, 2197–2203, doi:10.1016/j.biomaterials.2003.09.085.
[257]
Sarda, S.; Fernández, E.; Nilsson, M.; Balcells, M.; Planell, J.A. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J. Biomed. Mater. Res. 2002, 61, 653–659, doi:10.1002/jbm.10264.
[258]
Qi, X.; Ye, J.; Wang, Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Acta Biomater. 2008, 4, 1837–1845, doi:10.1016/j.actbio.2008.05.009.
Mari?o, F.T.; Mastio, J.; Rueda, C.; Blanco, L.; Cabarcos, E.L. Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel. J. Mater. Sci. Mater. Med. 2007, 18, 1195–1201, doi:10.1007/s10856-007-0139-9.
[261]
Mari?o, F.T.; Torres, J.; Hamdan, M.; Rodríguez, C.R.; Cabarcos, E.L. Advantages of using glycolic acid as a retardant in a brushite forming cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 571–579.
[262]
Flautre, B.; Delecourt, C.; Blary, M.; van Landuyt, P.; Lemai?tre, J.; Hardouin, P. Volume effect on biological properties of a calcium phosphate hydraulic cement, experimental study on sheep. Bone 1999, 25, S35–S39, doi:10.1016/S8756-3282(99)00147-7.
[263]
Bohner, M. pH variations of a solution after injecting brushite cements. Key Eng. Mater. 2001, 192–195, 813–816, doi:10.4028/www.scientific.net/KEM.192-195.813.
[264]
Xie, J.; Riley, C.; Chittur, K. Effect of albumin on brushite transformation to hydroxyapatite. J. Biomed. Mater. Res. 2001, 57, 357–365, doi:10.1002/1097-4636(20011205)57:3<357::AID-JBM1178>3.0.CO;2-1.
[265]
Frayssinet, P.; Roudier, M.; Lerch, A.; Ceolin, J.L.; Depres, E.; Rouquet, N. Tissue reaction against a self-setting calcium phosphate cement set in bone or outside the organism. J. Mater. Sci. Mater. Med. 2000, 11, 811–815, doi:10.1023/A:1008909714090.
[266]
Ohura, K.; Bohner, M.; Hardouin, P.; Lemai?tre, J.; Pasquier, G.; Flautre, B. Resorption of and bone formation from new β-tricalcium phosphate – monocalcium phosphate cements: An in vivo study. J. Biomed. Mater. Res. 1996, 30, 193–200, doi:10.1002/(SICI)1097-4636(199602)30:2<193::AID-JBM9>3.0.CO;2-M.
[267]
Flautre, B.; Maynou, C.; Lemai?tre, J.; van Landuyt, P.; Hardouin, P. Bone colonization of β-TCP granules incorporated in brushite cements. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 413–417, doi:10.1002/jbm.10262.
[268]
Tas, A.C. Monetite (CaHPO4) synthesis in ethanol at room temperature. J. Am. Ceram. Soc. 2009, 92, 2907–2912, doi:10.1111/j.1551-2916.2009.03351.x.
[269]
?berg, J.; Engqvist, H. Non-Aqueous, Hydraulic Cement Useful for Producing Hardened Cement, as Biomaterials Composition Comprises Non-Aqueous Mixture of Brushite or Monetite-Forming Calcium Phosphate Powder Composition, and Nonaqueous Water-Miscible LiquidWO2010055483 A2. 12, November, 2008.
[270]
?berg, J.; Brisby, H.; Henriksson, H.B.; Lindahl, A.; Thomsen, P.; Engqvist, H. Premixed acidic calcium phosphate cement: Characterization of strength and microstructure. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 436–441.
[271]
Cama, G.; Gharibi, B.; Sait, M.S.; Knowles, J.C.; Lagazzo, A.; Romeed, S.; di Silvio, L.; Deb, S. A novel method of forming micro- and macroporous monetite cements. J. Mater. Chem. B 2013, 1, 958–969, doi:10.1039/c2tb00153e.
[272]
?ahin, E.; ?ift?io?lu, M. Monetite promoting effect of NaCl on brushite cement setting kinetics. J. Mater. Chem. B 2013, 1, 2943–2950, doi:10.1039/c3tb20130a.
American Society for Testing and Materials. Standard Test Method for Time of Setting of Hydraulic Cement Paste by Gillmore Needles; ASTM C266-89; American Society for Testing and Materials: Philadelphia, PA, USA, 1993; pp. 189–191.
[275]
American Society for Testing and Materials. Standard Test Method for Time of Setting of Hydraulic Cement Paste by Vicat Needle; ASTM C191-92; American Society for Testing and Materials: Philadelphia, PA, USA, 1993; pp. 158–160.
[276]
Nilsson, M.; Carlson, J.; Fernández, E.; Planell, J.A. Monitoring the setting of calcium-based bone cements using pulse-echo ultrasound. J. Mater. Sci. Mater. Med. 2002, 13, 1135–1141, doi:10.1023/A:1021181702807.
[277]
Carlson, J.; Nilsson, M.; Fernández, E.; Planell, J.A. An ultrasonic pulse-echo technique for monitoring the setting of CaSO4-based bone cement. Biomaterials 2003, 24, 71–77, doi:10.1016/S0142-9612(02)00253-3.
[278]
Hofmann, M.P.; Nazhat, S.N.; Gbureck, U.; Barralet, J.E. Real-time monitoring of the setting reaction of brushite-forming cement using isothermal differential scanning calorimetry. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 360–364.
[279]
Martin, R.I.; Brown, P.W. The effects of magnesium on hydroxyapatite formation in vitro from CaHPO4 and Ca4(PO4)2O at 37.4 °C. Calcif. Tissue Int. 1997, 60, 538–546, doi:10.1007/s002239900277.
[280]
Brunner, T.J.; Bohner, M.; Dora, C.; Gerber, C.; Stark, W.J. Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 400–407.
[281]
Gao, W.Y.; Wang, Y.W.; Dong, L.M.; Yu, Z.W. Thermokinetic analysis of the hydration process of calcium phosphate cement. J. Therm. Anal. Calorim. 2006, 85, 785–789, doi:10.1007/s10973-005-7433-x.
[282]
Bohner, M.; Gbureck, U. Thermal reactions of brushite cements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 375–385, doi:10.1002/jbm.b.30881.
[283]
Hofmann, M.P.; Young, A.M.; Nazhat, S.N.; Gbureck, U.; Barralet, J.E. Setting kinetics observation of a brushite cement by FTIR and DSC. Key Eng. Mater. 2006, 309–311, 837–840, doi:10.4028/www.scientific.net/KEM.309-311.837.
[284]
Mohn, D.; Doebelin, N.; Tadier, S.; Bernabei, R.E.; Luechinger, N.A.; Stark, W.J.; Bohner, M. Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J. Mater. Chem. 2011, 21, 13963–13972.
[285]
Liu, C.; Huang, Y.; Zheng, H. Study of the hydration process of calcium phosphate cement by AC impedance spectroscopy. J. Am. Ceram. Soc. 1999, 82, 1052–1057, doi:10.1111/j.1151-2916.1999.tb01872.x.
[286]
Hofmann, M.P.; Young, A.M.; Gbureck, U.; Nazhat, S.N.; Barralet, J.E. FTIR-monitoring of a fast setting brushite bone cement: Effect of intermediate phases. J. Mater. Chem. 2006, 16, 3199–3206, doi:10.1039/b603554j.
[287]
Hsu, H.C.; Tuan, W.H.; Lee, H.Y. In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite. Mater. Sci. Eng. C 2009, 29, 950–954, doi:10.1016/j.msec.2008.08.014.
[288]
Rau, J.V.; Generosi, A.; Smirnov, V.V.; Ferro, D.; Rossi, A.V.; Barinov, S.M. Energy dispersive X-ray diffraction study of phase development during hardening of calcium phosphate bone cements with addition of chitosan. Acta Biomater. 2008, 4, 1089–1094, doi:10.1016/j.actbio.2008.01.006.
[289]
Generosi, A.; Smirnov, V.V.; Rau, J.V.; Rossi, A.V.; Ferro, D.; Barinov, S.M. Phase development in the hardening process of two calcium phosphate bone cements: An energy dispersive X-ray diffraction study. Mater. Res. Bull. 2008, 43, 561–571, doi:10.1016/j.materresbull.2007.04.016.
[290]
Rau, J.V.; Fosca, M.; Komlev, V.S. In situ time-resolved energy dispersive X-ray diffraction studies of calcium phosphate based bone cements. Key Eng. Mater. 2013, 541, 115–120, doi:10.4028/www.scientific.net/KEM.541.115.
[291]
Ginebra, M.P.; Fernández, E.; Driessens, F.C.M.; Boltong, M.G.; Muntasell, J.; Font, J.; Planell, J.A. The effects of temperature on the behaviour of an apatitic calcium phosphate cement. J. Mater. Sci. Mater. Med. 1995, 6, 857–860, doi:10.1007/BF00134332.
[292]
Baroud, G.; Bohner, M.; Heini, P.; Steffen, T. Injection biomechanics of bone cements used in vertebroplasty. Biomed. Mater. Eng. 2004, 14, 487–504.
[293]
Leung, K.S.; Siu, W.S.; Li, S.F.; Qin, L.; Cheung, W.H.; Tam, K.F.; Po, P.; Lui, Y. An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 78, 153–160.
[294]
Eames, W.B.; Monroe, S.D.; Roan, J.D.; Oneal, S.J. Proportioning and mixing of cements: A comparison of working times. Oper. Dent. 1977, 2, 97–104.
[295]
Baroud, G.; Matsushita, C.; Samara, M.; Beckman, L.; Steffen, T. Influence of oscillatory mixing on the injectability of three acrylic and two calcium phosphate bone cements for vertebroplasty. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 68, 105–111.
[296]
Nomoto, T.; Haraguchi, K.; Yamaguchi, S.; Sugano, N.; Nakayama, H.; Sekino, T.; Niihara, K. Hydrolyses of calcium phosphates-allografts composite in physiological solutions. J. Mater. Sci. Mater. Med. 2006, 17, 379–385.
[297]
Oda, M.; Takeuchi, A.; Lin, X.; Matsuya, S.; Ishikawa, K. Effects of liquid phase on basic properties of α-tricalcium phosphate-based apatite cement. Dent. Mater. J. 2008, 27, 672–677, doi:10.4012/dmj.27.672.
[298]
Sarda, S.; Fernández, E.; Llorens, J.; Martinez, S.; Nilsson, M.; Planell, J.A. Rheological properties of an apatitic bone cement during initial setting. J. Mater. Sci. Mater. Med. 2001, 12, 905–909, doi:10.1023/A:1012832325957.
Bohner, M.; Baroud, G. Injectability of calcium phosphate pastes. Biomaterials 2005, 26, 1553–1563, doi:10.1016/j.biomaterials.2004.05.010.
[301]
Khairoun, I.; Boltong, M.G.; Driessens, F.C.M.; Planell, J.A. Some factors controlling the injectability of calcium phosphate bone cements. J. Mater. Sci. Mater. Med. 1998, 9, 425–428.
[302]
Burguera, E.F.; Xu, H.H.K.; Sun, L. Injectable calcium phosphate cement: Effects of powder-to-liquid ratio and needle size. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 493–502, doi:10.1002/jbm.b.30896.
[303]
Habib, M.; Baroud, G.; Gitzhofer, F.; Bohner, M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008, 4, 1465–1471, doi:10.1016/j.actbio.2008.03.004.
[304]
Montufar, E.B.; Maazouz, Y.; Ginebra, M.P. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013, 9, 6188–6198, doi:10.1016/j.actbio.2012.11.028.
[305]
Baroud, G.; Cayer, E.; Bohner, M. Rheological characterization of concentrated aqueous beta-tricalcium phosphate suspensions: The effect of liquid-to-powder ratio, milling time and additives. Acta Biomater. 2005, 1, 357–363, doi:10.1016/j.actbio.2005.01.003.
[306]
Ishikawa, K. Effects of spherical tetracalcium phosphate on injectability and basic properties of apatitic cement. Key Eng. Mater. 2003, 240–242, 369–372, doi:10.4028/www.scientific.net/KEM.240-242.369.
[307]
Habib, M.; Baroud, G.; Gitzhofer, F.; Bohner, M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Part II: Particle separation study. Acta Biomater. 2010, 6, 250–256, doi:10.1016/j.actbio.2009.06.012.
[308]
Bohner, M.; Doebelin, N.; Baroud, G. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur. Cell Mater. 2006, 12, 26–35.
[309]
Miyamoto, Y.; Ishikawa, K.; Takechi, M.; Toh, T.; Yuasa, T.; Nagayama, M.; Suzuki, K. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J. Biomed. Mater. Res. Appl. Biomater. 1999, 48, 36–42, doi:10.1002/(SICI)1097-4636(1999)48:1<36::AID-JBM8>3.0.CO;2-I.
[310]
Bermudez, O.; Boltong, M.G.; Driessens, F.C.M.; Planell, J.A. Compressive strength and diametral tensile strength of some calcium-orthophosphate cements, a pilot study. J. Mater. Sci. Mater. Med. 1993, 4, 389–393, doi:10.1007/BF00122197.
[311]
Del Valle, S.; Miňo, N.; Muňoz, F.; González, A.; Planell, J.A.; Ginebra, M.P. In vivo evaluation of an injectable macroporous calcium phosphate cement. J. Mater. Sci. Mater. Med. 2007, 18, 353–361, doi:10.1007/s10856-006-0700-y.
[312]
Khairoun, I.; Driessens, F.C.M.; Boltong, M.G.; Planell, J.A.; Wenz, R. Addition of cohesion promoters to calcium orthophosphate cements. Biomaterials 1999, 20, 393–398, doi:10.1016/S0142-9612(98)00202-6.
[313]
Alkhraisat, M.H.; Rueda, C.; Mari?o, F.T.; Torres, J.; Jerez, L.B.; Gbureck, U.; Cabarcos, E.L. The effect of hyaluronic acid on brushite cement cohesion. Acta Biomater. 2009, 5, 3150–3156, doi:10.1016/j.actbio.2009.04.001.
[314]
Alkhraisat, M.H.; Rueda, C.; Jerez, L.B.; Mari?o, F.T.; Torres, J.; Gbureck, U.; Cabarcos, E.L. Effect of silica gel on the cohesion, properties and biological performance of brushite cement. Acta Biomater. 2010, 6, 257–265, doi:10.1016/j.actbio.2009.06.010.
[315]
Low, K.L.; Tan, S.H.; Zein, S.H.S.; Roether, J.A.; Mouri?o, V.; Boccaccini, A.R. Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 273–286.
[316]
Habib, M.; Baroud, G.; Galea, L.; Bohner, M. Evaluation of the ultrasonication process for injectability of hydraulic calcium phosphate pastes. Acta Biomater. 2012, 8, 1164–1168, doi:10.1016/j.actbio.2011.10.032.
[317]
Bigi, A.; Bracci, B.; Panzavolta, S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 2004, 25, 2893–2899, doi:10.1016/j.biomaterials.2003.09.059.
[318]
Ishikawa, K.; Matsuya, S.; Nakagawa, M.; Udoh, K.; Suzuki, K. Basic properties of apatite cement containing spherical tetracalcium phosphate made with plasma melting method. J. Mater. Sci. Mater. Med. 2004, 15, 13–17, doi:10.1023/B:JMSM.0000010092.01661.a8.
[319]
Wang, X.; Ye, J.; Wang, Y. Effect of additives on the morphology of the hydrated product and physical properties of a calcium phosphate cement. J. Mater. Sci.Technol. 2008, 24, 285–288.
[320]
Barralet, J.E.; Hofmann, M.; Grover, L.M.; Gbureck, U. High strength apatitic cement by modification with α-hydroxy acid salts. Adv. Mater. 2003, 15, 2091–2095, doi:10.1002/adma.200305469.
[321]
Barralet, J.E.; Duncan, C.O.; Dover, M.S.; Bassett, D.C.; Nishikawa, H.; Monaghan, A.; Gbureck, U. Cortical bone screw fixation in ionically modified apatite cements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 73, 238–243.
[322]
Ginebra, M.P.; Boltong, M.G.; Fernández, E.; Planell, J.A.; Driessens, F.C.M. Effect of various additives and temperature on some properties of an apatitic calcium phosphate cement. J. Mater. Sci. Mater. Med. 1995, 6, 612–616, doi:10.1007/BF00121286.
[323]
Acarturk, O.; Lehmicke, M.; Aberman, H.; Toms, D.; Hollinger, J.O.; Fulmer, M.T. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86, 56–62.
[324]
Wang, X.; Ye, J.; Wang, Y. Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater. 2007, 3, 757–763, doi:10.1016/j.actbio.2007.01.004.
[325]
Chen, F.; Liu, C.; Mao, Y. Bismuth-doped injectable calcium phosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling. Acta Biomater. 2010, 6, 3199–3207, doi:10.1016/j.actbio.2010.02.049.
[326]
Romieu, G.; Garric, X.; Munier, S.; Vert, M.; Boudeville, P. Calcium-strontium mixed phosphate as novel injectable and radio-opaque hydraulic cement. Acta Biomater. 2010, 6, 3208–3215, doi:10.1016/j.actbio.2010.02.008.
[327]
?berg, J.; Henriksson, H.B.; Engqvist, H.; Palmquist, A.; Brantsing, C.; Lindahl, A.; Thomsen, P.; Brisby, H. Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement. J. Biomed. Mater. Res. Part A 2012, 100, 1269–1278.
[328]
Watanabe, M.; Tanaka, M.; Sakurai, M.; Maeda, M. Development of calcium phosphate cement. J. Eur. Ceram. Soc. 2006, 26, 549–552.
[329]
Bercier, A.; Gon?alves, S.; Lignon, O.; Fitremann, J. Calcium phosphate bone cements including sugar surfactants: Part one—Porosity, setting times and compressive strength. Materials 2010, 3, 4695–4709, doi:10.3390/ma3104695.
[330]
Sarda, S.; Nilsson, M.; Balcells, M.; Fernández, E. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J. Biomed. Mater. Res. Part A 2003, 65, 215–221.
[331]
Friberg, J.; Fernández, E.; Sarda, S.; Nilsson, M.; Ginebra, M.P.; Martinez, S.; Planell, J.A. An experimental approach to the study of the rheology behavior of synthetic bone calcium phosphate cements. Key Eng. Mater. 2001, 192–195, 777–780, doi:10.4028/www.scientific.net/KEM.192-195.777.
[332]
Reinstorf, A.; Hempel, U.; Olgem?ller, F.; Domaschke, H.; Schneiders, W.; Mai, R.; Stadlinger, B.; R?sen-Wolff, A.; Rammelt, S.; Gelinsky, M.; et al. O-phospho-l-serine modified calcium phosphate cements—Material properties, in vitro and in vivo investigations. Materwiss. Werkst. 2006, 37, 491–503.
[333]
Lode, A.; Reinstorf, A.; Bernhardt, A.; Wolf-Brandstetter, C.; K?nig, U.; Gelinsky, M. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J. Biomed. Mater. Res. Part A 2008, 86, 749–759.
[334]
Mai, R.; Lux, R.; Proff, P.; Lauer, G.; Pradel, W.; Leonhardt, H.; Reinstorf, A.; Gelinsky, M.; Jung, R.; Eckelt, U.; et al. O-phospho-l-serine: A modulator of bone healing in calcium-phosphate cements. Biomed. Tech. 2008, 53, 229–233, doi:10.1515/BMT.2008.040.
[335]
Vater, C.; Lode, A.; Bernhardt, A.; Reinstorf, A.; Nies, B.; Gelinsky, M. Modifications of a calcium phosphate cement with biomolecules—Influence on nanostructure, material, and biological properties. J. Biomed. Mater. Res. A 2010, 95A, 912–923, doi:10.1002/jbm.a.32920.
[336]
Grover, L.M.; Gbureck, U.; Farrar, D.F.; Barralet, J.E. Adhesion of a novel calcium phosphate cement to cortical bone and several common biomaterials. Key Eng. Mater. 2006, 309–311, 849–852, doi:10.4028/www.scientific.net/KEM.309-311.849.
[337]
Markovic, M.; Takagi, S.; Chow, L.C. Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng. Mater. 2001, 192–195, 773–776, doi:10.4028/www.scientific.net/KEM.192-195.773.
[338]
Tajima, S.; Kishi, Y.; Oda, M.; Maruta, M.; Matsuya, S.; Ishikawa, K. Fabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement. Dent. Mater. J. 2006, 25, 616–620, doi:10.4012/dmj.25.616.
Cama, G.; Barberis, F.; Botter, R.; Cirillo, P.; Capurro, M.; Quarto, R.; Scaglione, S.; Finocchio, E.; Mussi, V.; Valbusa, U. Preparation and properties of macroporous brushite bone cements. Acta Biomater. 2009, 5, 2161–2168, doi:10.1016/j.actbio.2009.02.012.
[341]
Vazquez, D.; Takagi, S.; Frukhtbeyn, S.; Chow, L.C. Effects of addition of mannitol crystals on the porosity and dissolution rates of a calcium phosphate cement. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 225–232, doi:10.6028/jres.115.016.
[342]
Shimogoryo, R.; Eguro, T.; Kimura, E.; Maruta, M.; Matsuya, S.; Ishikawa, K. Effects of added mannitol on the setting reaction and mechanical strength of apatite cement. Dent. Mater. J. 2009, 28, 627–633.
[343]
Almirall, A.; Larrecq, G.; Delgado, J.A.; Martínez, S.; Planell, J.A.; Ginebra, M.P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 2004, 25, 3671–3680, doi:10.1016/j.biomaterials.2003.10.066.
Takagi, S.; Chow, L.C. Formation of macropores in calcium phosphate cement implants. J. Mater. Sci. Mater. Med. 2001, 12, 135–139, doi:10.1023/A:1008917910468.
[346]
Tas, A.C. Preparation of porous apatite granules from calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 2231–2239, doi:10.1007/s10856-007-3326-9.
[347]
Tas, A.C. Preparation of self-setting cement-based micro- and macroporous granules of carbonated apatitic calcium phosphate. Ceram. Eng. Sci. Proc. 2006, 27, 49–60.
[348]
Simon, C.G., Jr.; Khatri, C.A.; Wight, S.A.; Wang, F.W. Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. J. Orthop. Res. 2002, 20, 473–482, doi:10.1016/S0736-0266(01)00140-1.
[349]
Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.M.; Jansen, J.A.; Mikos, A.G. Biocompatibility and degradation of poly(d,l-lactic-co-glycolic acid)/calcium phosphate cement composites. J. Biomed. Mater. Res. Part A 2005, 74, 533–544.
[350]
Habraken, W.J.E.M.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A. Injectable PLGA microsphere/calcium phosphate cements, physical properties and degradation characteristics. J. Biomater. Sci. Polym. Ed. 2006, 17, 1057–1074, doi:10.1163/156856206778366004.
[351]
Link, D.P.; van den Dolder, J.; Jurgens, W.J.F.M.; Wolke, J.G.C.; Jansen, J.A. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Biomaterials 2006, 27, 4941–4947, doi:10.1016/j.biomaterials.2006.05.022.
[352]
Habraken, W.J.E.M.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A. PLGA microsphere/calcium phosphate cement composites for tissue engineering, in vitro release and degradation characteristics. J. Biomater. Sci. Polym. Ed. 2008, 19, 1171–1188, doi:10.1163/156856208785540136.
[353]
Link, D.P.; van den Dolder, J.; van den Beucken, J.J.J.P.; Cuijpers, V.M.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A. Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. J. Biomed. Mater. Res. Part A 2008, 87, 760–769.
[354]
Lanao, R.P.F.; Leeuwenburgh, S.C.; Wolke, J.G.; Jansen, J.A. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater. 2011, 7, 3459–3468, doi:10.1016/j.actbio.2011.05.036.
[355]
Lopez-Heredia, M.A.; Sariibrahimoglu, K.; Yang, W.; Bohner, M.; Yamashita, D.; Kunstar, A.; van Apeldoorn, A.A.; Bronkhorst, E.M.; Lanao, R.P.F.; Leeuwenburgh, S.C.G.; et al. Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Acta Biomater. 2012, 8, 404–414, doi:10.1016/j.actbio.2011.08.010.
[356]
Fullana, S.G.; Ternet, H.; Freche, M.; Lacout, J.L.; Rodriguez, F. Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement. Acta Biomater. 2010, 6, 2294–2300, doi:10.1016/j.actbio.2009.11.019.
[357]
Li, M.; Liu, X.; Liu, X.; Ge, B.; Chen, K. Creation of macroporous calcium phosphate cements as bone substitutes by using genipin-crosslinked gelatin microspheres. J. Mater. Sci. Mater. Med. 2009, 20, 925–934, doi:10.1007/s10856-008-3654-4.
[358]
Habraken, W.J.E.M.; de Jonge, L.T.; Wolke, J.G.C.; Yubao, L.; Mikos, A.G.; Jansen, J.A. Introduction of gelatin microspheres into an injectable calcium phosphate cement. J. Biomed. Mater. Res. A 2008, 87A, 643–655, doi:10.1002/jbm.a.31703.
[359]
Tang, P.F.; Li, G.; Wang, J.F.; Zheng, Q.J.; Wang, Y. Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 90, 886–893.
[360]
Wang, X.P.; Ye, J.D.; Li, X.; Dong, H. Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide. J. Mater. Sci. Mater. Med. 2008, 19, 3221–3225, doi:10.1007/s10856-008-3450-1.
[361]
Habraken, W.J.E.M.; Zhang, Z.; Wolke, J.G.C.; Grijpma, D.W.; Mikos, A.G.; Feijen, J.; Jansen, J.A. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 2008, 29, 2464–2476.
[362]
Xu, H.H.K.; Simon, C.G., Jr. Self-hardening calcium phosphate composite scaffold for bone tissue engineering. J. Orthop. Res. 2004, 22, 535–543, doi:10.1016/j.orthres.2003.09.010.
[363]
Burguera, E.F.; Xu, H.H.K.; Takagi, S.; Chow, L.C. High early strength calcium phosphate bone cement: Effects of dicalcium phosphate dihydrate and absorbable fibers. J. Biomed. Mater. Res. Part A 2005, 75, 966–975, doi:10.1002/jbm.a.30497.
[364]
Xu, H.H.K.; Quinn, J.B. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 2002, 23, 193–202, doi:10.1016/S0142-9612(01)00095-3.
[365]
Gorst, N.J.S.; Perrie, Y.; Gbureck, U.; Hutton, A.L.; Hofmann, M.P.; Grover, L.M.; Barralet, J.E. Effects of fiber reinforcement on the mechanical properties of brushite cement. Acta Biomater. 2006, 2, 95–102.
[366]
Zuo, Y.; Yang, F.; Wolke, J.G.C.; Li, Y.; Jansen, J.A. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 2010, 6, 1238–1247, doi:10.1016/j.actbio.2009.10.036.
[367]
Xu, H.H.K.; Simon, C.G., Jr. Self-hardening calcium phosphate cement-mesh composite: Reinforcement, macropores, and cell response. J. Biomed. Mater. Res. Part A 2004, 69, 267–278.
[368]
Losee, J.E.; Karmacharya, J.; Gannon, F.H.; Slemp, A.E.; Ong, G.; Hunenko, O.; Gorden, A.D.; Bartlett, S.P.; Kirschner, R.E. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement, interaction with bioresorbable mesh. J. Craniofac. Surg. 2003, 14, 117–124, doi:10.1097/00001665-200301000-00022.
Vasconcellos, L.A.; dos Santos, L.A. Calcium phosphate cement scaffolds with PLGA fibers. Mater. Sci. Eng. C 2013, 33, 1032–1040, doi:10.1016/j.msec.2012.10.019.
[371]
Ginebra, M.P.; Espanol, M.; Montufar, E.B.; Perez, R.A.; Mestres, G. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 2010, 6, 2863–2873, doi:10.1016/j.actbio.2010.01.036.
[372]
Del Real, R.P.; Wolke, J.G.C.; Vallet-Regi, M.; Jansen, J.A. A new method to produce macropores in calcium phosphate cements. Biomaterials 2002, 23, 3673–3680, doi:10.1016/S0142-9612(02)00101-1.
[373]
Del Real, R.P.; Ooms, E.; Wolke, J.G.C.; Vallet-Regi, M.; Jansen, J.A. In vivo bone response to porous calcium phosphate cement. J. Biomed. Mater. Res. Part A 2003, 65, 30–36.
[374]
Hesaraki, S.; Moztarzadeh, F.; Sharifi, D. Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res. Part A 2007, 83, 80–87, doi:10.1002/jbm.a.31196.
[375]
Hesaraki, S.; Zamanian, A.; Moztarzadeh, F. The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties, acetic acid versus citric acid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86, 208–216.
[376]
Hesaraki, S.; Moztarzadeh, F.; Solati-Hashjin, M. Phase evaluation of an effervescent-added apatitic calcium phosphate bone cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 203–209.
[377]
Ginebra, M.P.; Delgado, J.A.; Harr, I.; Almirall, A.; del Valle, S.; Planell, J.A. Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J. Biomed. Mater. Res. Part A 2007, 80, 351–361.
[378]
Montufar, E.B.; Aguirre, A.; Gil, C.; Engel, E.; Traykova, T.; Planell, J.A.; Ginebra, M.P. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater. 2010, 6, 876–885.
[379]
Montufar, E.B.; Traykova, T.; Planell, J.A.; Ginebra, M.P. Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: Polysorbate 80 versus gelatin. Mater. Sci. Eng. C 2011, 31, 1498–1504, doi:10.1016/j.msec.2011.06.008.
[380]
Andrianjatovo, H.; Lema?tre, J. Effects of polysaccharides on the cement properties in the monocalcium phosphate/β-tricalcium phosphate system. Innov. Tech. Biol. Med. 1995, 16, 140–147.
[381]
Cherng, A.; Takagi, S.; Chow, L.C. Effects of hydroxypropylmethylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J. Biomed. Mater. Res. 1997, 35, 273–277, doi:10.1002/(SICI)1097-4636(19970605)35:3<273::AID-JBM1>3.0.CO;2-E.
[382]
Yokoyama, A.; Matsuno, H.; Yamamoto, S.; Kawasaki, T.; Kohgo, T.; Uo, M.; Watari, F.; Nakasu, M. Tissue response to a newly developed calcium phosphate cement containing succinic acid and carboxymethyl-chitin. J. Biomed. Mater. Res. Part A 2003, 64, 491–501.
[383]
Jyoti, M.A.; Thai, V.V.; Min, Y.K.; Lee, B.T.; Song, H.Y. In vitro bioactivity and biocompatibility of calcium phosphate cements using hydroxy-propyl-methyl-cellulose (HPMC). Appl. Surf. Sci. 2010, 257, 1533–1539, doi:10.1016/j.apsusc.2010.08.091.
[384]
Bigi, A.; Torricelli, P.; Fini, M.; Bracci, B.; Panzavolta, S.; Sturba, L.; Giardino, R. A biomimetic gelatin-calcium phosphate bone cement. Int. J. Artif. Organs 2004, 27, 664–673.
[385]
Bigi, A.; Panzavolta, S.; Sturba, L.; Torricelli, P.; Fini, M.; Giardino, R. Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin – calcium phosphate bone cement. J. Biomed. Mater. Res. Part A 2006, 78, 739–745.
[386]
Fujishiro, Y.; Takahashi, K.; Sato, T. Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J. Biomed. Mater. Res. 2001, 54, 525–530, doi:10.1002/1097-4636(20010315)54:4<525::AID-JBM80>3.0.CO;2-#.
[387]
Bigi, A.; Panzavolta, S.; Rubini, K. Setting mechanism of a biomimetic bone cement. Chem. Mater. 2004, 16, 3740–3745, doi:10.1021/cm049363e.
[388]
Panzavolta, S.; Torricelli, P.; Sturba, L.; Bracci, B.; Giardino, R.; Bigi, A. Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. J. Biomed. Mater. Res. Part A 2008, 84, 965–972.
[389]
Xu, L.X.; Shi, X.T.; Wang, Y.P.; Shi, Z.L. Performance of calcium phosphate bone cement using chitosan and gelatin as well as citric acid as hardening liquid. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 6381–6384.
Majekodunmi, A.O.; Deb, S.; Nicholson, J.W. Effect of molecular weight and concentration of poly(acrylic acid) on the formation of a polymeric calcium phosphate cement. J. Mater. Sci. Mater. Med. 2003, 14, 747–752, doi:10.1023/A:1025028119787.
[392]
Majekodunmi, A.O.; Deb, S. Poly(acrylic acid) modified calcium phosphate cements, the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. J. Mater. Sci. Mater. Med. 2007, 18, 1883–1888, doi:10.1007/s10856-007-3026-5.
Komath, M.; Varma, H.K. Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull. Mater. Sci. 2003, 26, 415–422, doi:10.1007/BF02711186.
[395]
Chavez, G.S.C.; Alge, D.L.; Chu, T.M.G. Additive concentration effects on dicalcium phosphate dihydrate cements prepared using monocalcium phosphate monohydrate and hydroxyapatite. Biomed. Mater. 2011, 6, 065007, doi:10.1088/1748-6041/6/6/065007.
[396]
Bohner, M.; Theiss, F.; Apelt, D.; Hirsiger, W.; Houriet, R.; Rizzoli, G.; Gnos, E.; Frei, C.; Auer, J.A.; von Rechenberg, B. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials 2003, 24, 3463–3474, doi:10.1016/S0142-9612(03)00234-5.
[397]
Leroux, L.; Hatim, Z.; Freche, M.; Lacout, J.L. Effects of various adjuvants (lactic acid, glycerol and chitosan) on the injectability of a calcium phosphate cement. Bone 1999, 25, S31–S34, doi:10.1016/S8756-3282(99)00130-1.
[398]
Barralet, J.E.; Tremayne, M.J.; Lilley, K.J.; Gbureck, U. Chemical modification of calcium phosphate cements with α-hydroxy acids and their salts. Chem. Mater. 2005, 17, 1313–1319, doi:10.1021/cm048803z.
[399]
Driessens, F.C.M.; Boltong, M.G.; de Maeyer, E.A.P.; Verbeeck, R.M.H.; Wenz, R. Effect of temperature and immersion on the setting of some calcium phosphate cements. J. Mater. Sci. Mater. Med. 2000, 11, 453–457, doi:10.1023/A:1008944126664.
[400]
Ishikawa, K.; Takagi, S.; Chow, L.C.; Ishikawa, Y. Properties and mechanisms of fast-setting calcium phosphate cements. J. Mater. Sci. Mater. Med. 1995, 6, 528–533, doi:10.1007/BF00151034.
[401]
Miyamoto, Y.; Ishikawa, K.; Fukao, K.; Sawada, M.; Nagayama, M.; Kon, M.; Asaoka, K. In vivo setting behavior of fast-setting calcium phosphate cement. Biomaterials 1995, 16, 855–860, doi:10.1016/0142-9612(95)94147-D.
[402]
Kawai, T.; Fujisawa, N.; Suzuki, I.; Ohtsuki, C.; Matsushima, Y.; Unuma, H. Control of setting behavior of calcium phosphate paste using gelatinized starch. J. Ceram. Soc. Jpn. 2010, 118, 421–424, doi:10.2109/jcersj2.118.421.
[403]
Bohner, M.; Luginbühl, R.; Reber, C.; Doebelin, N.; Baroud, G.; Conforto, E. A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater. 2009, 5, 3524–3535, doi:10.1016/j.actbio.2009.05.024.
[404]
Egli, R.J.; Gruenenfelder, S.; Doebelin, N.; Hofstetter, W.; Luginbuehl, R.; Bohner, M. Thermal treatments of calcium phosphate biomaterials to tune the physico-chemical properties and modify the in vitro osteoclast response. Adv. Eng. Mater. 2011, 13, B102–B107, doi:10.1002/adem.201080037.
[405]
Takechi, M.; Miyamoto, Y.; Momota, Y.; Yuasa, T.; Tatehara, S.; Nagayama, M.; Ishikawa, K. Effects of various sterilization methods on the setting and mechanical properties of apatite cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 69, 58–63.
[406]
Schneider, G.; Blechschmidt, K.; Linde, D.; Litschko, P.; K?rbs, T.; Beleites, E. Bone regeneration with glass ceramic implants and calcium phosphate cements in a rabbit cranial defect model. J. Mater. Sci. Mater. Med. 2010, 21, 2853–2859, doi:10.1007/s10856-010-4143-0.
[407]
Johal, H.S.; Buckley, R.E.; Le, I.L.D.; Leighton, R.K. A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (α-BSM) in treatment of displaced intra-articular calcaneal fractures. J. Trauma Inj. Infect. Crit. Care 2009, 67, 875–882, doi:10.1097/TA.0b013e3181ae2d50.
[408]
Yuasa, T.; Miyamoto, Y.; Ishikawa, K.; Takechi, M.; Nagayama, M.; Suzuki, K. In vitro resorption of three apatite cements with osteoclasts. J. Biomed. Mater. Res. 2001, 54, 344–350, doi:10.1002/1097-4636(20010305)54:3<344::AID-JBM50>3.0.CO;2-1.
[409]
Puricelli, E.; Corsetti, A.; Ponzoni, D.; Martins, G.L.; Leite, M.G.; Santos, L.A. Characterization of bone repair in rat femur after treatment with calcium phosphate cement and autogenous bone graft. Head Face Med. 2010, 6, 10, doi:10.1186/1746-160X-6-10.
[410]
Zhaoa, X.; Lib, F.; Lic, S. Degradation characteristic of strontium-containing calcium phosphate cement in vivo. Adv. Mater. Res. 2010, 105–106, 553–556, doi:10.4028/www.scientific.net/AMR.105-106.553.
[411]
Khairoun, I.; Magne, D.; Gauthier, O.; Bouler, J.M.; Aguado, E.; Daculsi, G.; Weiss, P. In vitro characterization and in vivo properties of a carbonated apatite bone cement. J. Biomed. Mater. Res. 2002, 60, 633–642, doi:10.1002/jbm.10132.
[412]
Mao, K.; Yang, Y.; Li, J.; Hao, L.; Tang, P.; Wang, Z.; Wen, N.; Du, M.; Wang, J.; Wang, Y. Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone. Biomed. Mater. 2009, 4, 045003, doi:10.1088/1748-6041/4/4/045003.
[413]
Sanzana, E.S.; Navarro, M.; Macule, F.; Suso, S.; Planell, J.A.; Ginebra, M.P. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater. 2008, 4, 1924–1933, doi:10.1016/j.actbio.2008.04.023.
[414]
Bodde, E.W.H.; Cammaert, C.T.R.; Wolke, J.G.C.; Spauwen, P.H.M.; Jansen, J.A. Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 161–168.
[415]
Miyamoto, Y.; Ishikawa, K.; Takeshi, M.; Toh, T.; Yoshida, Y.; Nagayama, M.; Kon, M.; Asaoka, K. Tissue response to fast-setting calcium phosphate cement in bone. J. Biomed. Mater. Res. 1997, 37, 457–464, doi:10.1002/(SICI)1097-4636(19971215)37:4<457::AID-JBM3>3.0.CO;2-K.
[416]
Young, S.; Holde, M.; Gunasekaran, S.; Poser, R.; Constantz, B.R. The Correlation of Radiographic, MRI and Histological Evaluations over Two Years of a Carbonated Apatite Cement in a Rabbit Model. In Proceedings of the 44th Annual MeetingOrthopedic Research Society, New Orleans, LA, USA, 16–19 March 1998; p. 846.
[417]
Feng, B.; Guolin, M.; Yuan, Y.; Changshen, L.; Zhen, W.; Jian, L. Role of macropore size in the mechanical properties and in vitro degradation of porous calcium phosphate cements. Mater. Lett. 2010, 64, 2028–2031, doi:10.1016/j.matlet.2010.06.008.
[418]
Kroese-Deutman, H.C.; Wolke, J.G.C.; Spauwen, P.H.M.; Jansen, J.A. Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model. J. Biomed. Mater. Res. Part A 2006, 79, 503–511.
[419]
Bourgeois, B.; Laboux, O.; Obadia, L.; Gauthier, O.; Betti, E.; Aguado, E.; Daculsi, G.; Bouler, J.M. Calcium-deficient apatite: A first in vivo study concerning bone ingrowth. J. Biomed. Mater. Res. Part A 2003, 65, 402–408.
[420]
Lu, J.; Descamps, M.; Dejou, J.; Koubi, G.; Hardouin, P.; Lemai?tre, J.; Proust, J.P. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 408–412, doi:10.1002/jbm.10259.
[421]
Wenisch, S.; Stahl, J.P.; Horas, U.; Heiss, C.; Kilian, O.; Trinkaus, K.; Hild, A.; Schnettler, R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts, fine structural microscopy. J. Biomed. Mater. Res. Part A 2003, 67, 713–718.
[422]
Grossardt, C.; Ewald, A.; Grover, L.M.; Barralet, J.E.; Gbureck, U. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng.A 2010, 16, 3687–3695, doi:10.1089/ten.tea.2010.0281.
[423]
Ooms, E.M.; Wolke, J.G.C.; van der Waerden, J.P.; Jansen, J.A. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J. Biomed. Mater. Res. 2002, 61, 9–18, doi:10.1002/jbm.10029.
[424]
Theiss, F.; Apelt, D.; Brand, B.; Kutter, A.; Zlinszky, K.; Bohner, M.; Matter, S.; Frei, C.; Auer, J.A.; von Rechenberg, B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 2005, 26, 4383–4394, doi:10.1016/j.biomaterials.2004.11.056.
[425]
Heymann, D.; Pradal, G.; Benahmad, M. Cellular mechanisms of calcium phosphate degradation. Histol. Histopathol. 1999, 14, 871–877.
[426]
Penel, G.; Leroy, N.; van Landuyt, P.; Flautre, B.; Hardouin, P.; Lemai?tre, J.; Leroy, G. Raman microspectrometry studies of brushite cement: In vivo evolution in a sheep model. Bone 1999, 25, 81S–84S, doi:10.1016/S8756-3282(99)00139-8.
[427]
Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comments Inorg. Chem. 1999, 20, 285–299, doi:10.1080/02603599908021447.
[428]
Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: A review of literature. World J. Methodol. 2012, 2, 1–17, doi:10.5662/wjm.v2.i1.1.
[429]
Alge, D.L.; Goebel, W.S.; Chu, T.M.G. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: Comparison of MCPM/β-TCP and MCPM/HA formulations. Biomed. Mater. 2013, 8, 025010, doi:10.1088/1748-6041/8/2/025010.
[430]
Knabe, C.; Driessens, F.C.M.; Planell, J.A.; Gildenhaar, R.; Berger, G.; Reif, D.; Fitzner, R.; Radlanski, R.J.; Gross, U. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J. Biomed. Mater. Res. 2000, 52, 498–508, doi:10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-P.
[431]
Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508, doi:10.1126/science.289.5484.1504.
[432]
Mostov, K.; Werb, Z. Journey across the osteoclast. Science 1997, 276, 219–220, doi:10.1126/science.276.5310.219.
[433]
Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science 2000, 289, 1508–1514, doi:10.1126/science.289.5484.1508.
[434]
Sugawara, A.; Asaoka, K.; Ding, S.J. Calcium phosphate-based cements: Clinical needs and recent progress. J. Mater. Chem. B 2013, 1, 1081–1089, doi:10.1039/c2tb00061j.
[435]
Midy, V.; Hollande, E.; Rey, C.; Dard, M.; Plou?t, J. Adsorption of vascular endothelial growth factor to two different apatitic materials and its release. J. Mater. Sci. Mater. Med. 2001, 12, 293–298, doi:10.1023/A:1011286818733.
[436]
Hossain, M.; Irwin, R.; Baumann, M.J.; McCabe, L.R. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials 2005, 26, 2595–2602, doi:10.1016/j.biomaterials.2004.07.051.
[437]
Sun, L.; Berndt, C.C.; Gross, K.A.; Kucuk, A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings, a review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2001, 58, 570–592, doi:10.1002/jbm.1056.
[438]
Renault, F.; Chabriere, E.; Andrieu, J.P.; Dublet, B.; Masson, P.; Rochu, D. Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. J. Chromatogr. B 2006, 836, 15–21, doi:10.1016/j.jchromb.2006.03.029.
Ooms, E.M.; Egglezos, E.A.; Wolke, J.G.C.; Jansen, J.A. Soft-tissue response to injectable calcium phosphate cements. Biomaterials 2003, 24, 749–757, doi:10.1016/S0142-9612(02)00408-8.
[441]
Ooms, E.M.; Wolke, J.G.C.; van de Heuvel, M.T.; Jeschke, B.; Jansen, J.A. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 2003, 24, 989–1000, doi:10.1016/S0142-9612(02)00438-6.
[442]
Kobayashi, N.; Ong, K.; Villarraga, M.; Schwardt, J.; Wenz, R.; Togawa, D.; Fujishiro, T.; Turner, A.S.; Seim, H.B., III.; Bauer, T.W. Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model. J. Biomed. Mater. Res. Part A 2007, 81, 838–846.
[443]
Wen, C.Y.; Qin, L.; Lee, K.M.; Chan, K.M. The use of brushite calcium phosphate cement for enhancement of bone-tendon integration in an anterior cruciate ligament reconstruction rabbit model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89, 466–474.
[444]
Musha, Y.; Umeda, T.; Yoshizawa, S.; Shigemitsu, T.; Mizutani, K.; Itatani, K. Effects of blood on bone cement made of calcium phosphate: Problems and advantages. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 92, 95–101.
[445]
Fernández, E.; Ginebra, M.P.; Bermudez, O.; Boltong, M.G.; Driessens, F.C.M.; Planell, J.A. Dimensional and thermal behaviour of calcium phosphate cements during setting compared to PMMA bone cements. J. Mater. Sci. Lett. 1995, 14, 4–5, doi:10.1007/BF02565267.
[446]
O’Hara, R.M.; Orr, J.F.; Buchanan, F.J.; Wilcox, R.K.; Barton, D.C.; Dunne, N.J. Development of a bovine collagen-apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater. 2012, 8, 4043–4052, doi:10.1016/j.actbio.2012.07.003.
[447]
Pittet, C.; Lemai?tre, J. Mechanical characterization of brushite cements: A Mohr circles approach. J. Biomed. Mater. Res. Appl. Biomater. 2000, 53, 769–780, doi:10.1002/1097-4636(2000)53:6<769::AID-JBM19>3.0.CO;2-P.
[448]
Andrianjatovo, H.; Jose, F.; Lemai?tre, J. Effect of β-TCP granulometry on setting time and strength of calcium orthophosphate hydraulic cements. J. Mater. Sci. Mater. Med. 1996, 7, 34–39, doi:10.1007/BF00121187.
[449]
Ishikawa, K.; Takagi, S.; Chow, L.C.; Ishikawa, Y.; Eanes, E.D.; Asaoka, K. Behavior of a calcium orthophosphate cement in simulated blood plasma in vitro. Dent. Mater. 1994, 10, 26–32, doi:10.1016/0109-5641(94)90018-3.
[450]
Driessens, F.C.M. Chemistry and Applied Aspects of Calcium Orthophosphate Bone Cements. In Proceedings of Concepts and Clinical Applications of Ionic Cements, 15th European Conference on Biomaterials, Bordeaux, France, 8 September 1999.
[451]
Yamamoto, H.; Niwa, S.; Hori, M.; Hattori, T.; Sawai, K.; Aoki, S.; Hirano, M.; Takeuchi, H. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998, 19, 1587–1591, doi:10.1016/S0142-9612(97)00121-X.
[452]
Morgan, E.F.; Yetkinler, D.N.; Constantz, B.R.; Dauskardt, R.H. Mechanical properties of carbonated apatite bone mineral substitute: Strength, fracture and fatigue behaviour. J. Mater. Sci. Mater. Med. 1997, 8, 559–570, doi:10.1023/A:1018550831834.
Dos Santos, L.A.; de Oliveira, L.C.; Rigo, E.C.S.; Carrodeguas, R.G.; Boschi, A.O.; de Arruda, A.C.F. Influence of polymeric additives on the mechanical properties of α-tricalcium phosphate cement. Bone 1999, 25, 99S–102S, doi:10.1016/S8756-3282(99)00143-X.
[456]
Mickiewicz, R.A.; Mayes, A.M.; Knaack, D. Polymer–calcium phosphate cement composites for bone substitutes. J. Biomed. Mater. Res. 2002, 61, 581–592, doi:10.1002/jbm.10222.
[457]
Fernández, E.; Sarda, S.; Hamcerencu, M.; Vlad, M.D.; Gel, M.; Valls, S.; Torres, R.; López, J. High-strength apatitic cement by modification with superplasticizers. Biomaterials 2005, 26, 2289–2296, doi:10.1016/j.biomaterials.2004.07.043.
[458]
Takahashi, T.; Yamamoto, M.; Ioku, K.; Goto, S. Relationship between compressive strength and pore structure of hardened cement pastes. Adv. Cem. Res. 1997, 9, 25–30, doi:10.1680/adcr.1997.9.33.25.
Chow, L.C.; Hirayama, S.; Takagi, S.; Parry, E. Diametral tensile strength and compressive strength of a calcium phosphate cement, effect of applied pressure. J. Biomed. Mater. Res. Appl. Biomater. 2000, 53, 511–517, doi:10.1002/1097-4636(200009)53:5<511::AID-JBM10>3.0.CO;2-E.
[461]
Barralet, J.E.; Gaunt, T.; Wright, A.J.; Gibson, I.R.; Knowles, J.C. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 1–9, doi:10.1002/jbm.1074.
[462]
Zhang, Y.; Xu, H.H.K.; Takagi, S.; Chow, L.C. In situ hardening hydroxyapatite-based scaffold for bone repair. J. Mater. Sci. Mater. Med. 2006, 17, 437–445, doi:10.1007/s10856-006-8471-z.
[463]
Khairoun, I.; LeGeros, R.Z.; Daculsi, G.; Bouler, J.M.; Guicheux, J.; Gauthier, O. Macroporous, Resorbable and Injectable Calcium Phosphate-Based Cements (MCPC) for Bone Repair: Augmentation, Regeneration and Osteoporosis Treatment. U.S. Patent No. 7351280, 1 April 2008.
Dos Santos, L.A.; Carrodeguas, R.G.; Boschi, A.O.; de Arruda, A.C.F. Fiber-enriched double-setting calcium phosphate bone cement. J. Biomed. Mater. Res. Part A 2003, 65, 244–250.
[466]
Gbureck, U.; Spatz, K.; Thull, R. Improvement of mechanical properties of self-setting calcium phosphate bone cements mixed with different metal oxides. Materwiss. Werkst. 2003, 34, 1036–1040, doi:10.1002/mawe.200300700.
[467]
Zhang, Y.; Xu, H.H.K. Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. J. Biomed. Mater. Res. Part A 2005, 75, 832–840, doi:10.1002/jbm.a.30461.
[468]
Buchanan, F.; Gallagher, L.; Jack, V.; Dunne, N. Short-fibre reinforcement of calcium phosphate bone cement. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2007, 221, 203–212, doi:10.1243/09544119JEIM235.
[469]
Guo, H.; Wei, J.; Song, W.; Zhang, S.; Yan, Y.; Liu, C.; Xiao, T. Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. Int. J. Nanomed. 2012, 7, 3613–3624.
[470]
Srakaew, N.; Rattanachan, S.T. Effect of apatite wollastonite glass ceramic addition on brushite bone cement containing chitosan. Adv. Mater. Res. 2012, 506, 106–109, doi:10.4028/www.scientific.net/AMR.506.106.
[471]
Wu, T.Y.; Zhou, Z.B.; He, Z.W.; Ren, W.P.; Yu, X.W.; Huang, Y. Reinforcement of a new calcium phosphate cement with RGD-chitosan-fiber. J. Biomed. Mater. Res. A 2013, doi:10.1002/jbm.a.34669.
[472]
Wang, X.; Ye, J.; Wang, Y.; Chen, L. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube. J. Am. Ceram. Soc. 2007, 90, 962–964, doi:10.1111/j.1551-2916.2006.01460.x.
[473]
Chew, K.K.; Low, K.L.; Zein, S.H.S.; McPhail, D.S.; Gerhardt, L.C.; Roether, J.A.; Boccaccini, A.R. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 331–339, doi:10.1016/j.jmbbm.2010.10.013.
[474]
Low, K.L.; Tan, S.H.; Zein, S.H.S.; McPhail, D.S.; Boccaccini, A.R. Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. J. Mater. Des. 2011, 32, 3312–3319, doi:10.1016/j.matdes.2011.02.022.
[475]
Vélez, D.; Arita, I.H.; García-Gardu?o, M.V.; Casta?o, V.M. Synthesis and characterization of a hydroxyapatite-zinc oxide-polyacrylic acid concrete. Mater. Lett. 1994, 19, 309–315, doi:10.1016/0167-577X(94)90176-7.
[476]
Concrete. Available online: http://en.wikipedia.org/wiki/Concrete (accessed on 15 September 2013).
[477]
Dickens-Venz, S.H.; Takagi, S.; Chow, L.C.; Bowen, R.L.; Johnston, A.D.; Dickens, B. Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent. Mater. 1994, 10, 100–106, doi:10.1016/0109-5641(94)90048-5.
[478]
Xu, H.H.K.; Eichmiller, F.C.; Barndt, P.R. Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement. J. Mater. Sci. Mater. Med. 2001, 12, 57–65.
[479]
Alge, D.L.; Bennett, J.; Treasure, T.; Voytik-Harbin, S.; Goebel, W.S.; Chu, T.M.G. Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J. Biomed. Mater. Res. Part A 2012, 100, 1792–1802.
Xu, H.H.K.; Quinn, J.B.; Takagi, S.; Chow, L.C. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004, 25, 1029–1037, doi:10.1016/S0142-9612(03)00608-2.
[482]
Yokoyama, A.; Yamamoto, S.; Kawasaki, T.; Kohgo, T.; Nakasu, M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 2002, 23, 1091–1101, doi:10.1016/S0142-9612(01)00221-6.
[483]
Xu, H.H.K.; Simon, C.G., Jr. Fast setting calcium phosphate-chitosan scaffold: Mechanical properties and biocompatibility. Biomaterials 2005, 26, 1337–1348, doi:10.1016/j.biomaterials.2004.04.043.
[484]
Sun, L.; Xu, H.H.K.; Takagi, S.; Chow, L.C. Fast setting calcium phosphate cement – chitosan composite, mechanical properties and dissolution rates. J. Biomater. Appl. 2007, 21, 299–316.
[485]
Pan, Z.H.; Jiang, P.P.; Fan, Q.Y.; Ma, B.; Cai, H.P. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82, 246–252.
[486]
Liu, H.; Li, H.; Cheng, W.; Yang, Y.; Zhu, M.; Zhou, C. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater. 2006, 2, 557–565, doi:10.1016/j.actbio.2006.03.007.
[487]
Pan, Z.H.; Cai, H.P.; Jiang, P.P.; Fan, Q.Y. Properties of a calcium phosphate cement synergistically reinforced by chitosan fiber and gelatin. J. Polym. Res. 2006, 13, 323–327, doi:10.1007/s10965-006-9041-2.
[488]
Weir, M.D.; Xu, H.H.K. High-strength, in situ-setting calcium phosphate composite with protein release. J. Biomed. Mater. Res. Part A 2008, 85, 388–396, doi:10.1002/jbm.a.31347.
[489]
Lian, Q.; Li, D.C.; He, J.K.; Wang, Z. Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2008, 222, 347–353, doi:10.1243/09544119JEIM340.
[490]
Wang, X.; Chen, L.; Xiang, H.; Ye, J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 81, 410–418, doi:10.1002/jbm.b.30678.
[491]
Tanaka, S.; Kishi, T.; Shimogoryo, R.; Matsuya, S.; Ishikawa, K. Biopex acquires anti-washout properties by adding sodium alginate into its liquid phase. Dent. Mater. J. 2003, 22, 301–312.
[492]
Sariibrahimoglu, K.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Yubao, L.; Jansen, J.A. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J. Biomed. Mater. Res. Part A 2012, 100, 712–719.
[493]
Lin, J.; Zhang, S.; Chen, T.; Liu, C.; Lin, S.; Tian, X. Calcium phosphate cement reinforced by polypeptide copolymers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 76, 432–439.
[494]
Lopez-Heredia, M.A.; Pattipeilohy, J.; Hsu, S.; Grykien, M.; van der Weijden, B.; Leeuwenburgh, S.C.G.; Salmon, P.; Wolke, J.G.C.; Jansen, J.A. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. J. Biomed. Mater. Res. Part A 2013, 101, 478–490.
[495]
Miyamoto, Y.; Ishikawa, K.; Takechi, M.; Toh, T.; Yuasa, T.; Nagayama, M.; Suzuki, K. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 1998, 19, 707–715, doi:10.1016/S0142-9612(97)00186-5.
[496]
Knepper-Nicolai, B.; Reinstorf, A.; Hofinger, I.; Flade, K.; Wenz, R.; Pompe, W. Influence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D?. Biomol. Eng. 2002, 19, 227–231, doi:10.1016/S1389-0344(02)00036-9.
[497]
Hempel, U.; Reinstorf, A.; Poppe, M.; Fischer, U.; Gelinsky, M.; Pompe, W.; Wenzel, K.W. Proliferation and differentiation of osteoblasts on Biocement D? modified with collagen type I and citric acid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 130–143.
[498]
Reinstorf, A.; Ruhnow, M.; Gelinsky, M.; Pompe, W.; Hempel, U.; Wenzel, K.W.; Simon, P. Phosphoserine—A convenient compound for modification of calcium phosphate bone cement collagen composites. J. Mater. Sci. Mater. Med. 2004, 15, 451–455, doi:10.1023/B:JMSM.0000021119.14870.3d.
[499]
Otsuka, M.; Kuninaga, T.; Otsuka, K.; Higuchi, W.I. Effect of nanostructure on biodegradation behaviors of self-setting apatite/collagen composite cements containing vitamin K2 in rats. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 176–184.
[500]
Moreau, J.L.; Weir, M.D.; Xu, H.H.K. Self-setting collagen-calcium phosphate bone cement: Mechanical and cellular properties. J. Biomed. Mater. Res. Part A 2009, 91, 605–613, doi:10.1002/jbm.a.32248.
[501]
Otsuka, M.; Nakagawa, H.; Ito, A.; Higuchi, W.I. Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J. Pharm. Sci. 2010, 99, 286–292, doi:10.1002/jps.21835.
[502]
Dunne, N.; O’Gara, R.; Buchanan, F.; Orr, J. Effect of liquid/powder ratio on the setting, handling and mechanical properties of collagen-apatitic cements. Key Eng. Mater. 2012, 493–494, 415–421.
Gbureck, U.; Spatz, K.; Thull, R.; Barralet, J.E. Rheological enhancement of mechanically activated α-tricalcium phosphate cements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 73, 1–6.
[505]
Canal, C.; Ginebra, M.P. Fibre-reinforced calcium phosphate cements: A review. J. Mech. Behav. Biomed. Mater. 2011, 4, 1658–1671, doi:10.1016/j.jmbbm.2011.06.023.
[506]
Xu, H.H.K.; Eichmiller, F.C.; Giuseppetti, A.A. Reinforcement of a self-setting calcium phosphate cement with different fibers. J. Biomed. Mater. Res. 2000, 52, 107–114, doi:10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0.
[507]
Xu, H.H.K.; Quinn, J.B.; Takagi, S.; Chow, L.C.; Eichmiller, F.C. Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement on mechanical properties. J. Biomed. Mater. Res. 2001, 57, 457–466, doi:10.1002/1097-4636(20011205)57:3<457::AID-JBM1189>3.0.CO;2-X.
[508]
Dos Santos, L.A.; Carrodeguas, R.G.; Boschi, A.O.; de Arruda, A.C.F. Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif. Organs 2003, 27, 412–418, doi:10.1046/j.1525-1594.2003.07248.x.
[509]
Rigo, E.C.S.; dos Santos, L.A.; Vercik, L.C.O.; Carrodeguas, R.G.; Boschi, A.O. α-tricalcium phosphate- and tetracalcium phosphate/dicalcium phosphate-based dual setting cements. Lat. Am. Appl. Res. 2007, 37, 267–274.
[510]
Barounian, M.; Hesaraki, S.; Kazemzadeh, A. Development of strong and bioactive calcium phosphate cement as a light-cure organic-inorganic hybrid. J. Mater. Sci. Mater. Med. 2012, 23, 1569–1581, doi:10.1007/s10856-012-4637-z.
[511]
Christel, T.; Kuhlmann, M.; Vorndran, E.; Groll, J.; Gbureck, U. Dual setting α-tricalcium phosphate cements. J. Mater. Sci. Mater. Med. 2013, 24, 573–581, doi:10.1007/s10856-012-4828-7.
[512]
Dos Santos, L.A.; de Oliveira, L.C.; da Silva Rigo, E.C.; Carrodéguas, R.G.; Boschi, A.O.; de Arruda, A.C.F. Fiber reinforced calcium phosphate cement. Artif. Organs 2000, 24, 212–216, doi:10.1046/j.1525-1594.2000.06541.x.
[513]
Liu, C.S.; Chen, C.W.; Ducheyne, P. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites. Biomed. Mater. 2008, 3, 034111:1–034111:11.
[514]
Renno, A.C.M.; van de Watering, F.C.J.; Nejadnik, M.R.; Crovace, M.C.; Zanotto, E.D.; Wolke, J.G.C.; Jansen, J.A.; van den Beucken, J.J.J.P. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Acta Biomater. 2013, 9, 5728–5739, doi:10.1016/j.actbio.2012.11.009.
[515]
Renno, A.C.M.; Nejadnik, M.R.; van de Watering, F.C.J.; Crovace, M.C.; Zanotto, E.D.; Hoefnagels, J.P.M.; Wolke, J.G.C.; Jansen, J.A.; van den Beucken, J.J.J.P. Incorporation of bioactive glass in calcium phosphate cement: Material characterization and in vitro degradation. J. Biomed. Mater. Res. Part A 2013, 101, 2365–2373.
[516]
Yu, L.; Li, Y.; Zhao, K.; Tang, Y.; Cheng, Z.; Chen, J.; Zang, Y.; Wu, J.; Kong, L.; Liu, S.; et al. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 2013, 8, e62570, doi:10.1371/journal.pone.0062570.
[517]
Alge, D.L.; Chu, T.M.G. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: A method for 3D scaffold reinforcement. J. Biomed. Mater. Res. Part A 2010, 94, 547–555.
[518]
Julien, M.; Khairoun, I.; LeGeros, R.Z.; Delplace, S.; Pilet, P.; Weiss, P.; Daculsi, G.; Bouler, J.M.; Guicheux, J. Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 2007, 28, 956–965, doi:10.1016/j.biomaterials.2006.10.018.
Nakagawa, A.; Matsuya, S.; Takeuchi, A.; Ishikawa, K. Comparison of the effects of added α- and β-tricalcium phosphate on the basic properties of apatite cement. Dent. Mater. J. 2007, 26, 342–347, doi:10.4012/dmj.26.342.
[522]
Gu, T.; Shi, H.; Ye, J. Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 350–359.
[523]
Zhao, P.; Zhao, S.; Zhao, T.; Ren, X.; Wang, F.; Chen, X. Hydroxyapatite whisker effect on strength of calcium phosphate bone cement. Adv. Mater. Res. 2012, 534, 30–33, doi:10.4028/www.scientific.net/AMR.534.30.
[524]
Gisep, A.; Wieling, R.; Bohner, M.; Matter, S.; Schneider, E.; Rahn, B. Resorption patterns of calcium-phosphate cements in bone. J. Biomed. Mater. Res. Part A 2003, 66, 532–540.
[525]
Van den Vreken, N.M.F.; Pieters, I.Y.; Declercq, H.A.; Cornelissen, M.J.; Verbeeck, R.M.H. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate. Acta Biomater. 2010, 6, 617–625, doi:10.1016/j.actbio.2009.07.038.
[526]
Zhou, L.; Yan, J.L.; Hu, C.J. Degradation of bone repairing composite of calcium polyphosphate fiber, calcium phospate cement and micromorselized bone in vitro. J. Clin. Rehabil. Tissue Eng. Res. 2007, 11, 33–36.
[527]
Xu, L.X.; Shi, X.T.; Wang, Y.P.; Shi, Z.L. Mechanical effect of calcium polyphosphate fiber on reinforcing calcium phosphate bone cement composites. J. Clin. Rehabil. Tissue Eng. Res. 2009, 13, 7474–7476.
[528]
Krüger, R.; Groll, J. Fiber reinforced calcium phosphate cements—On the way to degradable load bearing bone substitutes? Biomaterials 2012, 33, 5887–5900, doi:10.1016/j.biomaterials.2012.04.053.
[529]
Harper, E.J.; Behiri, J.C.; Bonfield, W. Flexural and fatigue properties of a bone cement based upon polyethylmethacrylate and hydroxyapatite. J. Mater. Sci. Mater. Med. 1995, 6, 799–803, doi:10.1007/BF00134320.
[530]
Harper, E.J. Bioactive bone cements. Proc. Inst. Mech. Eng. H J. Eng. Med. 1998, 212, 113–120, doi:10.1243/0954411981533881.
[531]
Shinzato, S.; Kobayashi, M.; Mousa, W.F.; Kamimura, M.; Neo, M.; Kitamura, Y.; Kokubo, T.; Nakamura, T. Bioactive polymethylmethacrylate-based bone cement: Comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J. Biomed. Mater. Res. 2000, 51, 258–272, doi:10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-S.
[532]
Harper, E.J.; Braden, M.; Bonfield, W. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution, Influence of a silane coupling agent. J. Mater. Sci. Mater. Med. 2000, 11, 491–497, doi:10.1023/A:1013057724268.
[533]
Xu, H.H.K.; Quinn, J.B. Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: Effects of filler ratio and surface treatments on mechanical properties. J. Biomed. Mater. Res. 2001, 57, 165–174, doi:10.1002/1097-4636(200111)57:2<165::AID-JBM1155>3.0.CO;2-W.
[534]
Espigares, I.; Elvira, C.; Mano, J.F.; Vázquez, B.; san Román, J.; Reis, R.L. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2002, 23, 1883–1895, doi:10.1016/S0142-9612(01)00315-5.
[535]
Pek, Y.S.; Kurisawa, M.; Gao, S.; Chung, J.E.; Ying, J.Y. The development of a nanocrystalline apatite reinforced crosslinked hyaluronic acid-tyramine composite as an injectable bone cement. Biomaterials 2009, 30, 822–828, doi:10.1016/j.biomaterials.2008.10.053.
[536]
Lopez-Heredia, M.A.; Sa, Y.; Salmon, P.; de Wijn, J.R.; Wolke, J.G.C.; Jansen, J.A. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater. 2012, 8, 3120–3127, doi:10.1016/j.actbio.2012.05.007.
[537]
Claes, L.; H?llen, I.; Ignatius, A. Resorbable bone cements. Orthop?de 1997, 26, 459–462.
[538]
Jansen, J.A.; de Ruijter, J.E.; Schaeken, H.G.; van der Waerden, J.P.C.; Planell, J.A.; Driessens, F.C.M. Evaluation of tricalciumphosphate/hydroxyapatite cement for tooth replacement, an experimental animal study. J. Mater. Sci. Mater. Med. 1995, 6, 653–657.
[539]
Larsson, S.; Bauer, T.W. Use of injectable calcium phosphate cement for fracture fixation: A review. Clin. Orthop. Relat. Res. 2002, 395, 23–32, doi:10.1097/00003086-200202000-00004.
Gbureck, U.; Knappe, O.; Hofmann, N.; Barralet, J.E. Antimicrobial properties of nanocrystalline tetracalcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83B, 132–137, doi:10.1002/jbm.b.30776.
[542]
Sethuraman, S.; Nair, L.S.; El-Amin, S.; Nguyen, M.T.N.; Greish, Y.E.; Bender, J.D.; Brown, P.W.; Allcock, H.R.; Laurencin, C.T. Novel low temperature setting nanocrystalline calcium phosphate cements for bone repair: Osteoblast cellular response and gene expression studies. J. Biomed. Mater. Res. Part A 2007, 82, 884–891.
[543]
Link, D.P.; van den Dolder, J.; Wolke, J.G.C.; Jansen, J.A. The cytocompatibility and early osteogenic characteristics of an injectable calcium phosphate cement. Tissue Eng. 2007, 13, 493–500, doi:10.1089/ten.2006.0015.
[544]
Oda, H.; Nakamura, K.; Matsushita, T.; Yamamoto, S.; Ishibashi, H.; Yamazaki, T.; Morimoto, S. Clinical use of a newly developed calcium phosphate cement (XSB-671D). J. Orthop. Sci. 2006, 11, 167–174, doi:10.1007/s00776-005-0993-6.
[545]
Braun, C.; Rahn, B.; Fulmer, M.T.; Steiner, A.; Gisep, A. Intra-articular calcium Phosphate cement, its fate and impact on joint tissues in a rabbit model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 151–158.
[546]
Krell, K.V.; Wefel, J.S. A calcium phosphate cement root canal sealer—Scanning electron microscopic analysis. J. Endod. 1984, 10, 571–576, doi:10.1016/S0099-2399(84)80103-X.
[547]
Krell, K.V.; Madison, S. Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman’s cement using lateral condensation. J. Endod. 1985, 8, 336–339, doi:10.1016/S0099-2399(85)80040-6.
[548]
Costantino, P.; Friedman, C.; Jones, K.; Chow, L.C.; Pelzer, H.; Sisson, G. Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 379–384, doi:10.1001/archotol.1991.01870160033004.
[549]
Hong, Y.C.; Wang, J.T.; Hong, C.Y.; Brown, W.E.; Chow, C.Y. The periapical tissue reactions to a calcium phosphate cement in the teeth of monkeys. J. Biomed. Mater. Res. 1991, 25, 485–498, doi:10.1002/jbm.820250406.
[550]
Sugawara, A.; Fujikawa, K.; Kusama, K.; Nishiyama, M.; Murai, S.; Takagi, S.; Chow, L.C. Histopathologic reaction of calcium phosphate cement for alveolar ridge augmentation. J. Biomed. Mater. Res. 2002, 61, 47–52, doi:10.1002/jbm.10010.
[551]
Fujikawa, K.; Sugawara, A.; Kusama, K.; Nishiyama, M.; Murai, S.; Takagi, S.; Chow, L.C. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. Dent. Mater. J. 2002, 21, 296–305, doi:10.4012/dmj.21.296.
[552]
Comuzzi, L.; Ooms, E.; Jansen, J.A. Injectable calcium phosphate cement as a filler for bone defects around oral implants: An experimental study in goats. Clin. Oral Implants Res. 2002, 13, 304–311, doi:10.1034/j.1600-0501.2002.130311.x.
[553]
Shirakata, Y.; Oda, S.; Kinoshita, A.; Kikuchi, S.; Tsuchioka, H.; Ishikawa, I. Histocompatible healing of periodontal defects after application of injectable calcium phosphate bone cement. A preliminary study in dogs. J. Periodontol. 2002, 73, 1043–1053, doi:10.1902/jop.2002.73.9.1043.
[554]
Lee, S.K.; Lee, S.K.; Lee, S.I.; Park, J.H.; Jang, J.H.; Kim, H.W.; Kim, E.C. Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J. Endod. 2010, 36, 1537–1542, doi:10.1016/j.joen.2010.04.027.
[555]
Chaung, H.M.; Hong, C.H.; Chiang, C.P.; Lin, S.K.; Kuo, Y.S.; Lan, W.H.; Hsieh, C.C. Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J. Formos. Med. Assoc. 1996, 95, 545–550.
[556]
Zhang, W.; Walboomers, X.F.; Jansen, J.A. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-β1. J. Biomed. Mater. Res. Part A 2008, 85, 439–444.
[557]
Sugawara, A.; Chow, L.C.; Takagi, S.; Chohayeb, H. In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler. J. Endod. 1990, 16, 162–165, doi:10.1016/S0099-2399(06)81963-1.
[558]
Noetzel, J.; ?zer, K.; Reisshauer, B.H.; Anil, A.; R?ssler, R.; Neumann, K.; Kielbassa, A.M. Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair, a histological study in dogs. Clin. Oral Investig. 2006, 10, 77–83, doi:10.1007/s00784-005-0032-1.
[559]
Tagaya, M.; Goto, H.; Iinuma, M.; Wakamatsu, N.; Tamura, Y.; Doi, Y. Development of self-setting Te-Cp/α-TCP cement for pulpotomy. Dent. Mater. J. 2005, 24, 555–561.
[560]
Arisan, V.; Anil, A.; Wolke, J.G.; ?zer, K. The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: An experimental feasibility study in dogs. Int. J. Oral Maxillofac. Surg. 2010, 39, 463–468, doi:10.1016/j.ijom.2010.01.004.
[561]
Dorozhkin, S.V. Calcium orthophosphates in dentistry. J. Mater. Sci. Mater. Med. 2013, 24, 1335–1363, doi:10.1007/s10856-013-4898-1.
[562]
Aral, A.; Yalc?n, S.; Karabuda, Z.C.; Anιl, A.; Jansen, J.A.; Mutlu, Z. Injectable calcium phosphate cement as a graft material for maxillary sinus augmentation: An experimental pilot study. Clin. Oral Implants Res. 2008, 19, 612–617, doi:10.1111/j.1600-0501.2007.01518.x.
Bifano, C.A.; Edgin, W.A.; Colleton, C.; Bifano, S.L.; Constantino, P.D. Preliminary evaluation of hydroxyapatite cement as an augmentation device in the edentulous atrophic canine mandible. Oral Surg. 1998, 85, 512–516.
[565]
Ciprandi, M.T.O.; Primo, B.T.; Gassen, H.T.; Closs, L.Q.; Hernandez, P.A.G.; Silva, A.N., Jr. Calcium phosphate cement in orbital reconstructions. J. Craniofac. Surg. 2012, 23, 145–148, doi:10.1097/SCS.0b013e3182413d31.
[566]
Friedman, C.D.; Constantino, P.D.; Jones, K.; Chow, L.C.; Pelzer, H.; Sisson, G. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 385–389, doi:10.1001/archotol.1991.01870160039005.
[567]
Sinikovic, B.; Kramer, F.J.; Swennen, G.; Lubbers, H.T.; Dempf, R. Reconstruction of orbital wall defects with calcium phosphate cement: Clinical and histological findings in a sheep model. Int. J. Oral Maxillofac. Surg. 2007, 36, 54–61, doi:10.1016/j.ijom.2006.07.014.
[568]
Smartt, J.M.; Karmacharya, J.; Gannon, F.H.; Ong, G.; Jackson, O.; Bartlett, S.P.; Poser, R.D.; Kirschner, R.E. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: Assessment of biocompatibility, osteoconductivity and remodeling capacity. Plast. Reconstr. Surg. 2005, 115, 1642–1650, doi:10.1097/01.PRS.0000161466.74294.1E.
[569]
Reddi, S.P.; Stevens, M.R.; Kline, S.N.; Villanueva, P. Hydroxyapatite cement in craniofacial trauma surgery, indications and early experience. J. Craniomaxillofac. Trauma 1999, 5, 7–12.
[570]
Friedman, C.D.; Costantino, P.D.; Synderman, C.H.; Chow, L.C.; Takagi, S. Reconstruction of the frontal sinus and frontofacial skeleton with hydroxyapatite cement. Arch. Facial Plast. Surg. 2000, 2, 124–129, doi:10.1001/archfaci.2.2.124.
[571]
Kuemmerle, J.M.; Oberle, A.; Oechslin, C.; Bohner, M.; Frei, C.; Boecken, I.; von Rechenberg, B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—An experimental study in sheep. J. Craniomaxillofac. Surg. 2005, 33, 37–44, doi:10.1016/j.jcms.2004.09.002.
[572]
Luaces-Rey, R.; Garci?a-Rozado, A.; Crespo-Escudero, J.L.; Seijas, B.P.; Arenaz-Bu?a, J.; Lo?pez-Cedru?n, J.L. Use of carbonated calcium phosphate bone cement and resorbable plates for the treatment of frontal sinus fractures: Two case reports. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 272–273, doi:10.1016/j.bjps.2008.04.055.
[573]
Tamimi, F.; Torres, J.; Cabarcos, E.L.; Bassett, D.C.; Habibovic, P.; Luceron, E.; Barralet, J.E. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials 2009, 30, 208–216.
[574]
Lee, D.W.; Kim, J.Y.; Lew, D.H. Use of rapidly hardening hydroxyapatite cement for facial contouring surgery. J. Craniofac. Surg. 2010, 21, 1084–1088, doi:10.1097/SCS.0b013e3181e1b64b.
[575]
Singh, K.A.; Burstein, F.D.; Williams, J.K. Use of hydroxyapatite cement in pediatric craniofacial reconstructive surgery: Strategies for avoiding complications. J. Craniofac. Surg. 2010, 21, 1130–1135, doi:10.1097/SCS.0b013e3181e482c6.
[576]
Bambakidis, N.C.; Munyon, C.; Ko, A.; Selman, W.R.; Megerian, C.A. A novel method of translabyrinthine cranioplasty using hydroxyapatite cement and titanium mesh: A technical report. Skull Base 2010, 20, 157–161, doi:10.1055/s-0029-1246222.
[577]
Abe, T.; Anan, M.; Kamida, T.; Fujiki, M. Surgical technique for anterior skull base reconstruction using hydroxyapatite cement and titanium mesh. Acta Neurochir. 2009, 151, 1337–1338, doi:10.1007/s00701-009-0392-4.
[578]
Sanada, Y.; Fujinaka, T.; Yoshimine, T.; Kato, A. Optimal reconstruction of the bony defect after frontotemporal craniotomy with hydroxyapatite cement. J. Clin. Neurosci. 2011, 18, 280–282, doi:10.1016/j.jocn.2010.03.045.
[579]
Araki, K.; Tomifuji, M.; Suzuki, H.; Shiotani, A. Vocal fold injection with calcium phosphate cement (BIOPEX). Jpn. J. Logop. Phoniatr. 2012, 53, 187–193, doi:10.5112/jjlp.53.187.
[580]
Chung, S.B.; Nam, D.H.; NamPark, K.; Kim, J.H.; Kong, D.S. Injectable hydroxyapatite cement patch as an on-lay graft for the sellar reconstructions following endoscopic endonasal approach. Acta Neurochir. 2012, 154, 659–664, doi:10.1007/s00701-012-1293-5.
[581]
Benson, A.G.; Djalilian, H.R. Complications of hydroxyapatite bone cement reconstruction of retrosigmoid craniotomy: Two cases. Ear Nose Throat J. 2009, 88, E1–E4.
[582]
Wong, R.K.; Gandolfi, B.M.; St-Hilaire, H.; Wise, M.W.; Moses, M. Complications of hydroxyapatite bone cement in secondary pediatric craniofacial reconstruction. J. Craniofac. Surg. 2011, 22, 247–251, doi:10.1097/SCS.0b013e3181f7b7db.
[583]
Liverneaux, P. Osteoporotic distal radius curettage-filling with an injectable calcium phosphate cement. A cadaveric study. Eur. J. Orthop. Surg. Traumatol. 2005, 15, 1–6, doi:10.1007/s00590-004-0182-x.
[584]
Liverneaux, P.; Vernet, P.; Robert, C.; Diacono, P. Cement pinning of osteoporotic distal radius fractures with an injectable calcium phosphate bone substitute, report of 6 cases. Eur. J. Orthop. Surg. Traumatol. 2006, 16, 10–16, doi:10.1007/s00590-005-0018-3.
[585]
Thordarson, D.; Hedman, T.; Yetkinler, D.; Eskander, E.; Lawrence, T.; Poser, R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J. Bone Joint Surg. Am. 1999, 81, 239–246.
[586]
Stankewich, C.J.; Swiontkowski, M.F.; Tencer, A.F.; Yetkinler, D.N.; Poser, R.D. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J. Orthop. Res. 1996, 14, 786–793, doi:10.1002/jor.1100140516.
Bai, B.; Jazrawi, L.; Kummer, F.; Spivak, J. The use of an injectable, biodegradable calcium orthophosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999, 24, 1521–1526, doi:10.1097/00007632-199908010-00004.
[589]
Ryf, C.; Goldhahn, S.; Radziejowski, M.; Blauth, M.; Hanson, B. A new injectable brushite cement: First results in distal radius and proximal tibia fractures. Eur. J. Trauma Emerg. Surg. 2009, 35, 389–396, doi:10.1007/s00068-009-8165-6.
[590]
Horstmann, W.G.; Verheyen, C.C.P.M.; Leemans, R. An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury 2003, 34, 141–144, doi:10.1016/S0020-1383(02)00105-5.
[591]
Simpson, D.; Keating, J.F. Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 2004, 35, 913–918, doi:10.1016/S0020-1383(03)00109-8.
[592]
Welch, R.D.; Zhang, H.; Bronson, D.G. Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J. Bone Joint Surg. Am. 2003, 85, 222–231.
[593]
Keating, J.F.; Hajducka, C.L.; Harper, J. Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. J. Bone Joint Surg. Br. 2003, 85, 68–73, doi:10.1302/0301-620X.85B1.12575.
[594]
Yin, X.; Li, J.; Xu, J.; Huang, Z.; Rong, K.; Fan, C. Clinical assessment of calcium phosphate cement to treat tibial plateau fractures. J. Biomater. Appl. 2013, 28, 199–206, doi:10.1177/0885328212443295.
[595]
Moore, D.; Maitra, R.; Farjo, L.; Graziano, G.; Goldstein, S. Restoration of pedicle screw fixation with an in situ setting calcium orthophosphate cement. Spine 1997, 22, 1696–1705, doi:10.1097/00007632-199708010-00003.
[596]
Cho, W.; Wu, C.; Erkan, S.; Kang, M.M.; Mehbod, A.A.; Transfeldt, E.E. The effect on the pullout strength by the timing of pedicle screw insertion after calcium phosphate cement injection. J. Spinal Disord. Tech. 2011, 24, 116–120, doi:10.1097/BSD.0b013e3181dd7961.
[597]
Mermelstein, L.E.; McLain, R.F.; Yerby, S.A. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine 1998, 23, 664–671, doi:10.1097/00007632-199803150-00004.
[598]
Mermelstein, L.E.; Chow, L.C.; Friedman, C.; Crisco, J. The reinforcement of cancellous bone screws with calcium orthophosphate cement. J. Orthop. Trauma 1996, 10, 15–20, doi:10.1097/00005131-199601000-00003.
[599]
Stadelmann, V.A.; Bretton, E.; Terrier, A.; Procter, P.; Pioletti, D.P. Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation. J. Biomech. 2010, 43, 2869–2874, doi:10.1016/j.jbiomech.2010.07.025.
[600]
Daculsi, G.; Durand, M.; Hauger, O.; Seris, E.; Borget, P.; LeGeros, R.; Le Huec, J.C. Self hardening macroporous biphasic calcium phosphate bone void filler for bone reconstruction; animal study and human data. Key Eng. Mater. 2012, 493–494, 709–713.
[601]
Liverneaux, P.; Khallouk, R. Calcium phosphate cement in wrist arthrodesis: Three cases. J. Orthop. Sci. 2006, 11, 289–293, doi:10.1007/s00776-006-1008-y.
[602]
Ooms, E.M.; Wolke, J.G.C.; van der Waerden, J.P.C.M.; Jansen, J.A. Use of injectable calcium phosphate cement for the fixation of titanium implants: An experimental study in goats. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 66, 447–456.
[603]
Strauss, E.J.; Pahk, B.; Kummer, F.J.; Egol, K. Calcium phosphate cement augmentation of the femoral neck defect created after dynamic hip screw removal. J. Orthop. Trauma 2007, 21, 295–300, doi:10.1097/BOT.0b013e3180616ba5.
[604]
Schildhauer, T.A.; Bennett, A.P.; Wright, T.M.; Lane, J.M.; O’Leary, P.F. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: Biomechanical evaluation of a minimally invasive technique. J. Orthop. Res. 1999, 17, 67–72, doi:10.1002/jor.1100170111.
[605]
Jansen, J.A.; Ooms, E.; Verdonschot, N.; Wolke, J.G.C. Injectable calcium phosphate cement for bone repair and implant fixation. Orthop. Clin. North Am. 2005, 36, 89–95, doi:10.1016/j.ocl.2004.06.014.
[606]
Maestretti, G.; Cremer, C.; Otten, P.; Jakob, R.P. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur. Spine J. 2007, 16, 601–610, doi:10.1007/s00586-006-0258-x.
[607]
Van der Stok, J.; Weinans, H.; Kops, N.; Siebelt, M.; Patka, P.; van Lieshout, E.M. Properties of commonly used calcium phosphate cements in trauma and orthopaedic surgery. Injury 2013, 44, 1368–1374, doi:10.1016/j.injury.2013.06.004.
[608]
Hisatome, T.; Yasunaga, Y.; Ikuta, Y.; Fujimoto, Y. Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J. Biomed. Mater. Res. 2002, 59, 490–498, doi:10.1002/jbm.1263.
[609]
Lim, T.H.; Brebach, G.T.; Renner, S.M.; Kim, W.J.; Kim, J.G.; Lee, R.E.; Andersson, G.B.; An, H.S. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 2002, 27, 1297–1302, doi:10.1097/00007632-200206150-00010.
[610]
Belkoff, S.M.; Mathis, J.M.; Jasper, L.E.; Deramond, H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 2001, 26, 1542–1546, doi:10.1097/00007632-200107150-00008.
[611]
Heini, P.F.; Berlemann, U.; Kaufmann, M.; Lippuner, K.; Fankhauser, C.; van Landuyt, P. Augmentation of mechanical properties in osteoporotic vertebral bones—A biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur. Spine J. 2001, 10, 164–171, doi:10.1007/s005860000204.
[612]
Tomita, S.; Kin, A.; Yazu, M.; Abe, M. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J. Orthop. Sci. 2003, 8, 192–197, doi:10.1007/s007760300032.
[613]
Libicher, M.; Hillmeier, J.; Liegibel, U.; Sommer, U.; Pyerin, W.; Vetter, M.; Meinzer, H.P.; Grafe, I.; Meeder, P.; N?ldge, G.; et al. Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: Initial results from a clinical and experimental pilot study. Osteoporos. Int. 2006, 17, 1208–1215, doi:10.1007/s00198-006-0128-8.
[614]
Khanna, A.J.; Lee, S.; Villarraga, M.; Gimbel, J.; Steffey, D.; Schwardt, J. Biomechanical evaluation of kyphoplasty with calcium phosphate cement in a 2-functional spinal unit vertebral compression fracture model. Spine J. 2008, 8, 770–777, doi:10.1016/j.spinee.2007.06.012.
[615]
Zhu, X.S.; Zhang, Z.M.; Mao, H.Q.; Geng, D.C.; Wang, G.L.; Gan, M.F.; Yang, H.L. Biomechanics of calcium phosphate cement in vertebroplasty. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8071–8074.
[616]
Nakano, M.; Hirano, N.; Zukawa, M.; Suzuki, K.; Hirose, J.; Kimura, T.; Kawaguchi, Y. Vertebroplasty using calcium phosphate cement for osteoporotic vertebral fractures: Study of outcomes at a minimum follow-up of two years. Asian Spine J. 2012, 6, 34–42, doi:10.4184/asj.2012.6.1.34.
[617]
Otsuka, M.; Matsuda, Y.; Suwa, Y.; Fox, J.L.; Higuchi, W.I. A novel skeletal drug-delivery system using a self-setting calcium orthophosphate cement. 3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin. J. Pharm. Sci. 1994, 83, 255–258, doi:10.1002/jps.2600830229.
[618]
Yu, D.; Wong, J.; Matsuda, Y.; Fox, J.L.; Higuchi, W.I.; Otsuka, M. Self-setting hydroxyapatite cement: A novel skeletal drug-delivery system for antibiotics. J. Pharm. Sci. 1992, 81, 529–531, doi:10.1002/jps.2600810611.
[619]
Bohner, M.; Lemai?tre, J.; van Landuyt, P.; Zambelli, P.; Merkle, H.P.; Gander, B. Gentamicin-loaded hydraulic calcium orthophosphate bone cement as antibiotic delivery system. J. Pharm. Sci. 1997, 86, 565–572, doi:10.1021/js960405a.
[620]
Bohner, M.; Lemai?tre, J.; Merkle, H.P.; Gander, B. Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid). J. Pharm. Sci. 2000, 89, 1262–1270, doi:10.1002/1520-6017(200010)89:10<1262::AID-JPS4>3.0.CO;2-7.
[621]
Ratier, A.; Freche, M.; Locout, J.L.; Rodriguez, F. Behaviour of an injectable calcium phosphate cement with added tetracycline. Int. J. Pharm. 2004, 274, 261–268, doi:10.1016/j.ijpharm.2004.01.021.
[622]
Kisanuki, O.; Yajima, H.; Umeda, T.; Takakura, Y. Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin B. J. Orthop. Sci. 2007, 12, 281–288, doi:10.1007/s00776-007-1124-3.
[623]
McNally, A.; Sly, K.; Lin, S.; Bourges, X.; Daculsi, G. Release of antibiotics from macroporous injectable calcium phosphate cement. Key Eng. Mater. 2008, 361–363, 359–362, doi:10.4028/www.scientific.net/KEM.361-363.359.
Tamimi, F.; Torres, J.; Bettini, R.; Ruggera, F.; Rueda, C.; Lo?pez-Ponce, M.; Cabarcos, E.L. Doxycycline sustained release from brushite cements for the treatment of periodontal diseases. J. Biomed. Mater. Res. Part A 2008, 85, 707–714.
Hesaraki, S.; Nemati, R. Cephalexin-loaded injectable macroporous calcium phosphate bone cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89, 342–352, doi:10.1002/jbm.b.31222.
[628]
Van Staden, A.D.; Dicks, L.M.T. Calcium orthophosphate-based bone cements (CPCs): Applications, antibiotic release and alternatives to antibiotics. J. Appl. Biomater. Funct. Mater. 2012, 1, 2–11.
[629]
Canal, C.; Pastorino, D.; Mestres, G.; Schuler, P.; Ginebra, M.P. Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomater. 2013, 9, 8403–8412, doi:10.1016/j.actbio.2013.05.016.
[630]
Sakamoto, Y.; Ochiai, H.; Ohsugi, I.; Inoue, Y.; Yoshimura, Y.; Kishi, K. Mechanical strength and in vitro antibiotic release profile of antibiotic-loaded calcium phosphate bone cement. J. Craniofac. Surg. 2013, 24, 1447–1450, doi:10.1097/SCS.0b013e31829972de.
[631]
Otsuka, M.; Matsuda, Y.; Suwa, Y.; Fox, J.L.; Higuchi, W.I. A novel skeletal drug delivery system using a self-setting calcium orthophosphate cement. 5. Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug. J. Pharm. Sci. 1994, 83, 1565–1568, doi:10.1002/jps.2600831109.
[632]
Tahara, Y.; Ishii, Y. Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. J. Orthop. Sci. 2001, 6, 556–565, doi:10.1007/s007760100012.
[633]
Tani, T.; Okada, K.; Takahashi, S.; Suzuki, N.; Shimada, Y.; Itoi, E. Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo 2006, 20, 55–60.
[634]
Tanzawa, Y.; Tsuchiya, H.; Shirai, T.; Nishida, H.; Hayashi, K.; Takeuchi, A.; Kawahara, M.; Tomita, K. Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma. J. Orthop. Sci. 2011, 16, 77–84, doi:10.1007/s00776-011-0045-3.
[635]
Otsuka, M.; Matsuda, Y.; Suwa, Y.; Fox, J.L.; Higuchi, W.I. A novel skeletal drug delivery system using a self-setting calcium orthophosphate cement. 2. Physicochemical properties and drug release rate of the cement-containing indomethacin. J. Pharm. Sci. 1994, 83, 611–615, doi:10.1002/jps.2600830502.
[636]
Panzavolta, S.; Torricelli, P.; Bracci, B.; Fini, M.; Bigi, A. Alendronate and pamidronate calcium phosphate bone cements, setting properties and in vitro response of osteoblast and osteoclast cells. J. Inorg. Biochem. 2009, 103, 101–106, doi:10.1016/j.jinorgbio.2008.09.012.
[637]
Le Nihouannen, D.; Hacking, S.A.; Gbureck, U.; Komarova, S.V.; Barralet, J.E. The use of RANKL-coated brushite cement to stimulate bone remodeling. Biomaterials 2008, 29, 3253–3259, doi:10.1016/j.biomaterials.2008.03.035.
[638]
Li, D.X.; Fan, H.S.; Zhu, X.D.; Tan, Y.F.; Xiao, W.Q.; Lu, J.; Xiao, Y.M.; Chen, J.Y.; Zhang, X.D. Controllable release of salmon-calcitonin in injectable calcium phosphate cement modified by chitosan oligosaccharide and collagen polypeptide. J. Mater. Sci. Mater. Med. 2007, 18, 2225–2231, doi:10.1007/s10856-007-3084-8.
[639]
Kamegai, A.; Shimamura, N.; Naitou, K.; Nagahara, K.; Kanematsu, N.; Mori, M. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as delivery system. Biomed. Mater. Eng. 1994, 4, 291–307.
[640]
Fei, Z.; Hu, Y.; Wu, D.; Wu, H.; Lu, R.; Bai, J.; Song, H. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 1109–1116.
[641]
Ruhe?, P.Q.; Kroese-Deutman, H.C.; Wolke, J.G.C.; Spauwen, P.H.M.; Jansen, J.A. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 2004, 25, 2123–2132, doi:10.1016/j.biomaterials.2003.09.007.
[642]
Bodde, E.W.H.; Boerman, O.C.; Russel, F.G.M.; Mikos, A.G.; Spauwen, P.H.M.; Jansen, J.A. The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J. Biomed. Mater. Res. Part A 2008, 87, 780–791.
[643]
Perrier, M.; Lu, Y.; Nemke, B.; Kobayashi, H.; Peterson, A.; Markel, M. Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet. Surg. 2008, 37, 648–655, doi:10.1111/j.1532-950X.2008.00431.x.
[644]
Lopez-Heredia, M.A.; Kamphuis, B.G.J.; Thüne, P.C.; ?ner, C.F.; Jansen, J.A.; Walboomers, F.X. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials 2011, 32, 5411–5416.
[645]
Schnitzler, V.; Fayon, F.; Despas, C.; Khairoun, I.; Mellier, C.; Rouillon, T.; Massiot, D.; Walcarius, A.; Janvier, P.; Gauthier, O.; et al. Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: Critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomater. 2011, 7, 759–770, doi:10.1016/j.actbio.2010.09.017.
[646]
Irbe, Z.; Loca, D.; Vempere, D.; Berzina-Cimdina, L. Controlled release of local anesthetic from calcium phosphate bone cements. Mater. Sci. Eng. C 2012, 32, 1690–1694, doi:10.1016/j.msec.2012.04.069.
[647]
Thein-Han, W.; Liu, J.; Xu, H.H.K. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent. Mater. 2012, 28, 1059–1070, doi:10.1016/j.dental.2012.06.009.
[648]
Otsuka, M.; Hamada, H.; Otsuka, K.; Ohshima, H. Dissolution medium responsive simvastatin release from biodegradable apatite cements drug delivery system—The therapeutically effect and their histology in osteoporosis rats. Key Eng. Mater. 2012, 493–494, 684–688.
[649]
Ko, C.L.; Chen, W.C.; Chen, J.C.; Wang, Y.H.; Shih, C.J.; Tyan, Y.C.; Hung, C.C.; Wang, J.C. Properties of osteoconductive biomaterials: Calcium phosphate cement with different ratios of platelet-rich plasma as identifiers. Mater. Sci. Eng. C 2013, 33, 3537–3544, doi:10.1016/j.msec.2013.04.042.
[650]
Forouzandeh, A.; Hesaraki, S.; Zamanian, A. The releasing behavior and in vitro osteoinductive evaluations of dexamethasone-loaded porous calcium phosphate cements. Ceram. Int. 2013. in press.
[651]
Perez, R.A.; Kim, T.H.; Kim, M.; Jang, J.H.; Ginebra, M.P.; Kim, H.W. Calcium phosphate cements loaded with basic fibroblast growth factor: Delivery and in vitro cell response. J. Biomed. Mater. Res. Part A 2013, 101, 923–931.
[652]
Meraw, S.J.; Reeve, C.M.; Lohse, C.M.; Sioussat, T.M. Treatment of perimplant defects with combination growth factor cement. J. Periodontol. 2000, 71, 8–13, doi:10.1902/jop.2000.71.1.8.
[653]
Liu, H.; Zang, X.F.; Zhao, Z.P.; Wang, J.L.; Mi, L. Co-transplantation of exogenous nerve growth factor and calcium phosphate cement composite for repairing rabbit radial bone defects. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8037–8041.
[654]
Qu, X.Y.; Jiang, D.M.; Li, M.; Zhang, D.W.; Qin, J.Q.; Liu, C.K. Deproteinized osteoarticular allografts integrated with calcium phosphate cement and recombinant human vascular endothelial cell growth factor plus recombinant human bone morphogenetic protein-2, an immunological study. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8067–8070.
[655]
Yu, T.; Ye, J.; Gao, C.; Yu, L.; Wang, Y. Synthesis and drug delivery property of calcium phosphate cement with special crystal morphology. J. Am. Ceram. Soc. 2010, 93, 1241–1244.
[656]
Stallmann, H.P.; de Roo, R.; Faber, C.; Amerongen, A.V.N.; Wuisman, P.I.J.M. In vivo release of the antimicrobial peptide hLFi-11 from calcium phosphate cement. J. Orthop. Res. 2008, 26, 531–538, doi:10.1002/jor.20511.
[657]
Sasaki, T.; Ishibashi, Y.; Katano, H.; Nagumo, A.; Toh, S. In vitro elution of vancomycin from calcium phosphate cement. J. Arthroplast. 2005, 20, 1055–1059, doi:10.1016/j.arth.2005.03.035.
[658]
Gbureck, U.; Vorndran, E.; Muller, F.A.; Barralet, J.E. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J. Control. Release 2007, 122, 173–180, doi:10.1016/j.jconrel.2007.06.022.
Blom, E.J.; Klein-Nulend, J.; Wolke, J.G.C.; van Waas, M.A.J.; Driessens, F.C.M.; Burger, E.H. Transforming growth factor-β1 incorporation in a calcium phosphate bone cement, Material properties and release characteristics. J. Biomed. Mater. Res. 2002, 59, 265–272, doi:10.1002/jbm.1241.
[661]
Blom, E.J.; Klein-Nulend, J.; Yin, L.; van Waas, M.A.J.; Burger, E.H. Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin. Oral Implants Res. 2001, 12, 609–616, doi:10.1034/j.1600-0501.2001.120609.x.
[662]
Link, D.P.; van den Dolder, J.; van den Beucken, J.J.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials 2008, 29, 675–682, doi:10.1016/j.biomaterials.2007.10.029.
[663]
Habraken, W.J.E.M.; Boerman, O.C.; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. J. Biomed. Mater. Res. Part A 2009, 91, 614–622.
[664]
Ruhé, P.Q.; Boerman, O.C.; Russel, F.G.M.; Mikos, A.G.; Spauwen, P.H.M.; Jansen, J.A. In vivo release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. J. Mater. Sci. Mater. Med. 2006, 17, 919–927, doi:10.1007/s10856-006-0181-z.
[665]
Naito, K.; Obayashi, O.; Mogami, A.; Itoi, A.; Kaneko, K. Fracture of the calcium phosphate bone cement which used to enchondroma of the hand: A case report. Eur. J. Orthop. Surg. Traumatol. 2008, 18, 405–408, doi:10.1007/s00590-008-0321-x.
[666]
Ito, T.; Koyama, Y.; Otsuka, M. DNA complex-releasing system by injectable self-setting apatite cement. J. Gene Med. 2012, 14, 251–261.
[667]
Blattert, T.R.; Delling, G.; Weckbach, A. Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: A controlled, prospective study in the sheep model. Eur. Spine J. 2003, 12, 216–223.
[668]
Cavalcanti, S.C.; Santos, S.C.; Pereira, C.L.; Mazzonetto, R.; de Moraes, M.; Moreira, R.W.F. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J. Craniomaxillofac. Surg. 2008, 36, 354–359, doi:10.1016/j.jcms.2008.02.005.
[669]
Sanchez-Sotelo, J.; Munuera, L.; Madero, R. Treatment of fractures of the distal radius with a remodellable bone cement: A prospective, randomised study using Norian SRS?. J. Bone Joint Surg. Br. 2000, 82, 856–863, doi:10.1302/0301-620X.82B6.10317.
[670]
Lobenhoffer, P.; Gerich, T.; Witte, F.; Tscherne, H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: A prospective study of twenty-six cases with twenty-month mean follow-up. J. Orthop. Trauma 2002, 16, 143–149, doi:10.1097/00005131-200203000-00001.
[671]
Cassidy, C.; Jupiter, J.B.; Cohen, M.; Delli-Santi, M.; Fennell, C.; Leinberry, C.; Husband, J.; Ladd, A.; Seitz, W.R.; Constantz, B.R. Norian SRS? cement compared with conventional fixation in distal radial fractures, a randomized study. J. Bone Joint Surg. Am. 2003, 85, 2127–2137.
[672]
Schmidt, R.; Cakir, B.; Mattes, T.; Wegener, M.; Puhl, W.; Richter, M. Cement leakage during vertebroplasty, an underestimated problem? Eur. Spine J. 2005, 14, 466–473, doi:10.1007/s00586-004-0839-5.
[673]
Vlad, M.D.; Torres, R.; López, J.; Barracó, M.; Moreno, J.A.; Fernández, E. Does mixing affect the setting of injectable bone cement? An ultrasound study. J. Mater. Sci. Mater. Med. 2007, 18, 347–352.
[674]
Krebs, J.; Aebli, N.; Goss, B.G.; Sugiyama, S.; Bardyn, T.; Boecken, I.; Leamy, P.J.; Ferguson, S.J. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 82, 526–532.
[675]
Poetker, D.M.; Pytynia, K.B.; Meyer, G.A.; Wackym, P.A. Complication rate of transtemporal hydroxyapatite cement cranioplasties: A case series review of 76 cranioplasties. Otol. Neurotol. 2004, 25, 604–609, doi:10.1097/00129492-200407000-00031.
[676]
Ridenour, J.S.; Poe, D.S.; Roberson, D.W. Complications with hydroxyapatite cement in mastoid cavity obliteration. Otolaryngol. Head Neck Surg. 2008, 139, 641–645, doi:10.1016/j.otohns.2008.07.020.
[677]
Mizowaki, T.; Miyake, S.; Yoshimoto, Y.; Matsuura, Y.; Akiyama, S. Allergy of calcium phosphate cement material following skull reconstruction: A case report. Neurol. Surg. 2013, 41, 323–327.
[678]
Gaskin, J.A.; Murphy, J.; Marshall, A.H. Complications of hydroxyapatite bone cement use in cochlear implantation? Cochlear Implant. Int. 2013, 14, 174–177.
[679]
Russell, T.A.; Leighton, R.K. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J. Bone Joint Surg. Am. 2008, 90, 2057–2061, doi:10.2106/JBJS.G.01191.
[680]
Dickson, K.F.; Friedman, J.; Buchholz, J.G.; Flandry, F.D. The use of BoneSourceTM hydroxyapatite cement for traumatic metaphyseal bone void filling. J. Trauma 2002, 53, 1103–1108, doi:10.1097/00005373-200212000-00012.
[681]
Jungbluth, P.; Hakimi, M.; Grassmann, J.P.; Schneppendahl, J.; Kessner, A.; Sager, M.; Hakimi, A.R.; Becker, J.; Windolf, J.; Wild, M. The progress of early phase bone healing using porous granules produced from calcium phosphate cement. Eur. J. Med. Res. 2010, 15, 196–203.
[682]
Lopez, M.S.P.; Tamimi, F.; Lopez-Cabarcos, E.; Lopez-Ruiz, B. Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement. Biosens. Bioelectron. 2009, 24, 2574–2579, doi:10.1016/j.bios.2009.01.002.
[683]
Lopez, M.S.P.; Lopez-Ruiz, B. A sensitive glucose biosensor based on brushite, a biocompatible cement. Electroanalysis 2011, 23, 280–286, doi:10.1002/elan.201000489.
[684]
Yoshikawa, T.; Suwa, Y.; Ohgushi, H.; Tamai, S.; Ichijima, K. Self-setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed. Mater. Eng. 1996, 6, 345–351.
[685]
Simon, C.G., Jr.; Guthrie, W.F.; Wang, F.W. Cell seeding into calcium phosphate cement. J. Biomed. Mater. Res. Part A 2004, 68, 628–639.
[686]
Xu, H.H.K.; Weir, M.D.; Simon, C.G., Jr. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent. Mater. 2008, 24, 1212–1222, doi:10.1016/j.dental.2008.02.001.
[687]
Lemai?tre, J.; Pittet, C.; Brendlen, D. Pasty or Liquid Multiple Constituent Compositions for Injectable Calcium Phosphate Cements. U.S. Patent No. 7407542, 8 May 2008.
[688]
Chow, L.C.; Takagi, S. Dual-Phase Cement Precursor Systems for Bone Repair. U.S. Patent Application No. 20070092580, 26 April 2007.
[689]
Heinemann, S.; R?ssler, S.; Lemm, M.; Ruhnow, M.; Nies, B. Properties of injectable ready-to-usecalcium phosphate cement based on water-immiscible liquid. Acta Biomater. 2013, 9, 6199–6207, doi:10.1016/j.actbio.2012.12.017.
[690]
Takagi, S.; Chow, L.C.; Hirayama, S.; Sugawara, A. Premixed calcium phosphate cement pastes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 67, 689–696.
Shimada, Y.; Chow, L.C.; Takagi, S.; Tagami, J. Properties of injectable apatite-forming premixed cements. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 233–241, doi:10.6028/jres.115.017.
[694]
Sugawara, A.; Fujikawa, K.; Hirayama, S.; Takagi, S.; Chow, L.C. In vivo characteristics of premixed calcium phosphate cements when implanted in subcutaneous tissues and periodontal bone defects. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 277–290, doi:10.6028/jres.115.021.
[695]
Rajzer, I.; Casta?o, O.; Engel, E.; Planell, J.A. Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts. J. Mater. Sci. Mater. Med. 2010, 21, 2049–2056, doi:10.1007/s10856-010-4078-5.
Chow, L.C.; Takagi, S. Premixed Self-Hardening Bone Graft Pastes. U.S. Patent Application No. 20060263443, 23 November 2006.
[700]
Aberg, J.; Henriksson, H.B.; Engqvist, H.; Palmquist, A.; Lindahl, A.; Thomsen, P.; Brisby, H. In vitro and in vivo evaluation of an injectable premixed calcium phosphate cement; cell viability and immunological response from rat. Int. J. Nano Biomater. 2011, 3, 203–221, doi:10.1504/IJNBM.2011.042130.
[701]
Engstrand, J.; ?berg, J.; Engqvist, H. Influence of water content on hardening and handling of a premixed calcium phosphate cement. Mater. Sci. Eng. C 2013, 33, 527–531, doi:10.1016/j.msec.2012.09.026.
[702]
?berg, J.; Engstrand, J.; Engqvist, H. Influence of particle size on hardening and handling of a premixed calcium phosphate cement. J. Mater. Sci. Mater. Med. 2013, 24, 829–835, doi:10.1007/s10856-013-4855-z.
[703]
Akashi, A.; Matsuya, Y.; Unemori, M.; Akamine, A. Release profile of antimicrobial agents from α-tricalcium phosphate cement. Biomaterials 2001, 22, 2713–2717, doi:10.1016/S0142-9612(00)00438-5.
Bohner, M. Calcium phosphate emulsions: Possible applications. Key Eng. Mater. 2001, 192-195, 765–768, doi:10.4028/www.scientific.net/KEM.192-195.765.
[706]
Troczynski, T. A concrete solution. Nat. Mater. 2004, 3, 13–14, doi:10.1038/nmat1039.
[707]
Xu, H.H.K.; Takagi, S.; Quinn, J.B.; Chow, L.C. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J. Biomed. Mater. Res. Part A 2004, 68, 725–734.
[708]
Ginebra, M.P.; Rilliard, A.; Fernández, E.; Elvira, C.; san Roman, J.; Planell, J.A. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J. Biomed. Mater. Res. 2001, 57, 113–118, doi:10.1002/1097-4636(200110)57:1<113::AID-JBM1149>3.0.CO;2-5.
[709]
García-Fernández, L.; Halstenberg, S.; Unger, R.E.; Aguilar, M.R.; Kirkpatrick, C.J.; san Román, J. Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials 2010, 31, 7863–7872, doi:10.1016/j.biomaterials.2010.07.022.
[710]
Xu, H.H.K.; Burguera, E.F.; Carey, L.E. Strong, macroporous and in situ-setting calcium phosphate cement-layered structures. Biomaterials 2007, 28, 3786–3796, doi:10.1016/j.biomaterials.2007.05.015.
[711]
Andriotis, O.; Katsamenis, O.L.; Mouzakis, D.E.; Bouropoulos, N. Preparation and characterization of bioceramics produced from calcium phosphate cements. Cryst. Res. Technol. 2010, 45, 239–243, doi:10.1002/crat.200900551.
[712]
Gbureck, U.; Hozel, T.; Klammert, U.; Wurzler, K.; Muller, F.A.; Barralet, J.E. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 2007, 17, 3940–3945, doi:10.1002/adfm.200700019.
[713]
Habibovic, P.; Gbureck, U.; Doillon, C.J.; Bassett, D.C.; van Blitterswijk, C.A.; Barralet, J.E. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 2008, 29, 944–953, doi:10.1016/j.biomaterials.2007.10.023.
[714]
Lode, A.; Meissner, K.; Luo, Y.; Sonntag, F.; Glorius, S.; Nies, B.; Vater, C.; Despang, F.; Hanke, T.; Gelinsky, M. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 2013, doi:10.1002/term.1563.
[715]
Steffen, T.; Stoll, T.; Arvinte, T.; Schenk, R.K. Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur. Spine J. 2001, 10, S132–S140, doi:10.1007/s005860100325.
[716]
Guo, H.; Su, J.; Wei, J.; Kong, H.; Liu, C. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 2009, 5, 268–278, doi:10.1016/j.actbio.2008.07.018.
[717]
Guo, H.; Wei, J.; Kong, H.; Liu, C.; Pan, K. Biocompatibility and osteogenesis of calcium phosphate cement scaffolds for bone tissue engineering. Adv. Mater. Res. 2008, 47–50, 1383–1386, doi:10.4028/www.scientific.net/AMR.47-50.1383.
[718]
Park, J.H.; Lee, G.S.; Shin, U.S.; Kim, H.W. Self-hardening microspheres of calcium phosphate cement with collagen for drug delivery and tissue engineering in bone repair. J. Am. Ceram. Soc. 2011, 94, 351–354, doi:10.1111/j.1551-2916.2010.04314.x.
[719]
Moseke, C.; Bayer, C.; Vorndran, E.; Barralet, J.E.; Groll, J.; Gbureck, U. Low temperature fabrication of spherical brushite granules by cement paste emulsion. J. Mater. Sci. Mater. Med. 2012, 23, 2631–2637, doi:10.1007/s10856-012-4740-1.
[720]
Weir, M.D.; Xu, H.H.K.; Simon, C.G., Jr. Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J. Biomed. Mater. Res. Part A 2006, 77, 487–496, doi:10.1002/jbm.a.30626.
[721]
Xu, J.H.; Tan, W.Q.; Lin, J. Repair of madibular bone defect by combining calcium phosphate cement with bone morphogenetic protein composite as a bone graft material. Chin. J. Biomed.Eng. 2007, 26, 153–156.
[722]
Niikura, T.; Tsujimoto, K.; Yoshiya, S.; Tadokoro, K.; Kurosaka, M.; Shiba, R. Vancomycin-impregnated calcium phosphate cement for methicillin-resistant staphylococcus aureus femoral osteomyelitis. Orthopedics 2007, 30, 320–321.
[723]
Lode, A.; Wolf-Brandstetter, C.; Reinstorf, A.; Bernhardt, A.; K?nig, U.; Pompe, W.; Gelinsky, M. Calcium phosphate bone cements, functionalized with VEGF: Release kinetics and biological activity. J. Biomed. Mater. Res. Part A 2007, 81, 474–483.
[724]
Yoshikawa, M.; Toda, T. In vivo estimation of periapical bone reconstruction by chondroitin sulfate in calcium phosphate cement. J. Eur. Ceram. Soc. 2004, 24, 521–531, doi:10.1016/S0955-2219(03)00196-1.
[725]
Wang, J.L.; Mi, L.; Hou, G.H.; Zheng, Z. Repair of radial defects using calcium phosphate cements/poly lactic-co-glycolic acid materials combined with mesenchymal stem cells in rabbits. J. Clin. Rehabil. Tissue Eng. Res. 2008, 12, 8001–8005.
[726]
Zhao, L.; Weir, M.D.; Xu, H.H.K. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials 2010, 31, 3848–3857, doi:10.1016/j.biomaterials.2010.01.093.
[727]
Ding, T.; Yang, H.; Maltenfort, M.; Xie, R. Silk fibroin added to calcium phosphate cement to prevent severe cardiovascular complications. Case Rep. Clin. Pract. Rev. 2010, 16, 23–26.
[728]
Panzavolta, S.; Torricelli, P.; Bracci, B.; Fini, M.; Bigi, A. Functionalization of biomimetic calcium phosphate bone cements with alendronate. J. Inorg. Biochem. 2010, 104, 1099–1106, doi:10.1016/j.jinorgbio.2010.06.008.
[729]
Xu, H.H.K.; Zhao, L.; Detamore, M.S.; Takagi, S.; Chow, L.C. Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tissue Eng. A 2010, 16, 2743–2753, doi:10.1089/ten.tea.2009.0757.
[730]
Li, M.; Liu, X.; Liu, X.; Ge, B. Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: A pilot study. Clin. Orthop. Relat. Res. 2010, 468, 1978–1985, doi:10.1007/s11999-010-1321-9.
[731]
Weir, M.D.; Xu, H.H.K. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater. 2010, 6, 4118–4126, doi:10.1016/j.actbio.2010.04.029.
[732]
Chen, W.; Zhou, H.; Tang, M.; Weir, M.D.; Bao, C.; Xu, H.H.K. Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng. A 2012, 18, 816–827, doi:10.1089/ten.tea.2011.0267.
[733]
Zhao, L.; Weir, M.D.; Xu, H.H.K. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 2010, 31, 6502–6510, doi:10.1016/j.biomaterials.2010.05.017.
[734]
Dos Santos, L.A.; Carrodéguas, R.G.; Rogero, S.O.; Higa, O.Z.; Boschi, A.O.; de Arruda, A.C. Alpha-tricalcium phosphate cement: “In vitro” cytotoxicity. Biomaterials 2002, 23, 2035–2042, doi:10.1016/S0142-9612(01)00333-7.
[735]
Baroud, G.; Steffen, T. A new cannula to ease cement injection during vertebroplasty. Eur. Spine J. 2005, 14, 474–479, doi:10.1007/s00586-004-0822-1.
[736]
Joseph, C.; Gardner, D.; Jefferson, T.; Isaacs, B.; Lark, B. Self-healing cementitious materials: A review of recent work. Proc. Inst. Civ. Eng. Constr. Mater. 2011, 164, 29–41.
[737]
Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571–583, doi:10.1016/j.conbuildmat.2011.08.086.
[738]
Mihashi, H.; Nishiwaki, T. Development of engineered self-healing and self-repairing concrete-state-of-the-art report. J. Adv. Concr. Technol. 2012, 10, 170–184, doi:10.3151/jact.10.170.
[739]
Van Tittelboom, K.; de Belie, N. Self-healing in cementitious materials—A review. Materials 2013, 6, 2182–2217, doi:10.3390/ma6062182.
[740]
Anderson, J.M. The future of biomedical materials. J. Mater. Sci. Mater. Med. 2006, 17, 1025–1028, doi:10.1007/s10856-006-0439-5.