Introduction: Cardiospheres (CS) are self-assembling clusters of cells that can be grown from cardiac tissue. They contain a heterogeneous cell population that includes cardiac progenitor cells (CPCs) and cardiac fibroblasts. CS and CPCs have been shown to improve cardiac function after myocardial infarction (MI) in experimental models and are now being studied in clinical trials. The effects of aging on the proliferative capacity of CS and CPCs, and the paracrine signaling between cell types, remain incompletely understood. Methods and Results: We compared the growth of CS from young and aging murine hearts at baseline and following MI. The number of CS from young and aging hearts was similar at baseline. However, after MI, young hearts had a dramatic increase in the number of CS that grew, but this proliferative response to MI was virtually abolished in the aging heart. Further, the proportion of cells within the CS that were CPCs (defined as Sca-1(stem cell antigen-1) +/CD45 ?) was significantly lower in aging hearts than young hearts. Thus the number of available CPCs after culture from aging hearts was substantially lower than from young hearts. Cardiac fibroblasts from aging hearts proliferated more slowly in culture than those from young hearts. We then investigated the interaction between aging cardiac fibroblasts and CPCs. We found no significant paracrine effects on proliferation between these cell types, suggesting the impaired proliferation is a cell-autonomous problem. Conclusions: Aging hearts generate fewer CPCs, and aging CPCs have significantly reduced proliferative potential following MI. Aging cardiac fibroblasts also have reduced proliferative capacity, but these appear to be cell-autonomous problems, not caused by paracrine signaling between cell types.
References
[1]
National Heart Lung and Blood Institute. Incidence and Prevalence. 2006 Chart Book on Cardiovascular and Lung Diseases; National Institutes of Health: Bethesday, MD, USA, 2006; pp. 30–31.
[2]
Maggioni, A.A.; Maseri, A.; Fresco, C.; Franzosi, M.G.; Mauri, F.; Santoro, E.; Tognoni, G. The investigators of the gruppo italiano por lo studio della sopravvivenza nell’infarto M: Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. N. Engl. J. Med. 1993, 329, 1442–1448, doi:10.1056/NEJM199311113292002.
[3]
Shih, H.; Lee, B.; Lee, R.J.; Boyle, A.J. The aging heart and post-infarction left ventricular remodeling. J. Am. Coll. Cardiol. 2011, 57, 9–17, doi:10.1016/j.jacc.2010.08.623.
Ye, J.; Boyle, A.J.; Shih, H.; Sievers, R.E.; Zhang, Y.; Prasad, M.; Su, H.; Zhou, Y.; Grossman, W.; Bernstein, H.S.; et al. Sca-1+ cardiosphere-derived cells are enriched for isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One 2012, 7, e30329, doi:10.1371/journal.pone.0030329.
[6]
Ye, J.; Boyle, A.; Shih, H.; Sievers, R.; Wang, Z.-E.; Gormley, M.; Yeghiazarians, Y. CD45 positive cells are not an essential component in cardiosphere formation. Cell Tissue Res. 2013, 351, 201–205, doi:10.1007/s00441-012-1511-8.
[7]
Li, T.-S.; Cheng, K.; Lee, S.-T.; Matsushita, S.; Davis, D.; Malliaras, K.; Zhang, Y.; Matsushita, N.; Smith, R.R.; Marbán, E. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 2010, 28, 2088–2098, doi:10.1002/stem.532.
Banerjee, I.; Fuseler, J.W.; Price, R.L.; Borg, T.K.; Baudino, T.A. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, 1883–1891, doi:10.1152/ajpheart.00514.2007.
Messina, E.; de Angelis, L.; Frati, G.; Morrone, S.; Chimenti, S.; Fiordaliso, F.; Salio, M.; Battaglia, M.; Latronico, M.V.G.; Coletta, M.; et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 2004, 95, 911–921, doi:10.1161/01.RES.0000147315.71699.51.
[13]
Yeghiazarians, Y.; Zhang, Y.; Prasad, M.; Shih, H.; Saini, S.A.; Takagawa, J.; Sievers, R.E.; Wong, M.L.; Kapasi, N.K.; Mirsky, R.; et al. Injection of bone marrow cell extract into infarcted hearts results in functional improvement comparable to intact cell therapy. Mol. Ther. 2009, 17, 1250–1256, doi:10.1038/mt.2009.85.
[14]
Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2012 update. A report from the American Heart Association. Circulation 2012, 125, doi:10.1161/CIR.0b013e31823ac046.
[15]
Wang, X.; Takagawa, J.; Haddad, D.J.; Pinnamaneni, K.; Zhang, Y.; Sievers, R.E.; Grossman, W.; Yeghiazarians, Y.; Springer, M.L. Advanced donor age impairs bone marrow cell therapeutic efficacy for cardiac disease. J. Tissue Sci. Eng. 2011, 3, 2.
[16]
Fan, M.; Chen, W.; Liu, W.; Du, G.-Q.; Jiang, S.-L.; Tian, W.-C.; Sun, L.; Li, R.-K.; Tian, H. The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuv. Res. 2010, 13, 429–438, doi:10.1089/rej.2009.0986.
[17]
Khan, M.; Mohsin, S.; Khan, S.N.; Riazuddin, S. Repair of senescent myocardium by mesenchymal stem cells is dependent on the age of donor mice. J. Cell. Mol. Med. 2011, 15, 1515–1527, doi:10.1111/j.1582-4934.2009.00998.x.
Kan, C.-D.; Li, S.-H.; Weisel, R.D.; Zhang, S.; Li, R.-K. Recipient age determines the cardiac functional improvement achieved by skeletal myoblast transplantation. J. Am. Coll. Cardiol. 2007, 50, 1086–1092, doi:10.1016/j.jacc.2007.06.009.
[20]
Boyle, A.J.; Shih, H.; Hwang, J.; Ye, J.; Lee, B.; Zhang, Y.; Kwon, D.; Jun, K.; Zheng, D.; Sievers, R.; et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp. Gerontol. 2011, 46, 549–559, doi:10.1016/j.exger.2011.02.010.
[21]
Yuan, R.; Tsaih, S.-W.; Petkova, S.B.; Evsikova, C.M.D.; Xing, S.; Marion, M.A.; Bogue, M.A.; Mills, K.D.; Peters, L.L.; Bult, C.J.; et al. Aging in inbred strains of mice: Study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 2009, 8, 277–287, doi:10.1111/j.1474-9726.2009.00478.x.
[22]
Cieslik, K.A.; Trial, J.; Carlson, S.; Taffet, G.E.; Entman, M.L. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: Role of elevated circulating insulin levels. FASEB J. 2013, 27, 1761–1771, doi:10.1096/fj.12-220145.
[23]
Forte, E.; Miraldi, F.; Chimenti, I.; Angelini, F.; Zeuner, A.; Giacomello, A.; Mercola, M.; Messina, E. TGFβ-dependent epithelial-to-mesenchymal transition is required to generate cardiospheres from human adult heart biopsies. Stem Cells Dev. 2012, 21, 3081–3090, doi:10.1089/scd.2012.0277.
[24]
Leri, A.; Kajstura, J.; Anversa, P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev. 2005, 85, 1373–1416, doi:10.1152/physrev.00013.2005.
[25]
Urbanek, K.; Cesselli, D.; Rota, M.; Nascimbene, A.; de Angelis, A.; Hosoda, T.; Bearzi, C.; Boni, A.; Bolli, R.; Kajstura, J.; et al. Stem cell niches in the adult mouse heart. PNAS 2006, 103, 9226–9231, doi:10.1073/pnas.0600635103.