全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Various Subsets of Circulating Mononuclear Cells in Asymptomatic Coronary Artery Disease

DOI: 10.3390/jcm2030032

Keywords: circulating mononuclear cells, asymptomatic coronary artery disease, cardiovascular risk factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this study was to evaluate the correlation between multiple cardiovascular risk factors (MCRFs) and circulating mononuclear cells (CMCs) in asymptomatic coronary artery disease patients. Design and Methods: 126 subjects (54 male), aged 48 to 62 years, with asymptomatic coronary artery disease (CAD) documented previously with angiography, and 25 healthy volunteers were enrolled in the study. The flow cytometric technique was used for predictably distinguishing cell subsets that depend on the expression of CD14, CD34, Tie-2, CD45, and CD309 (VEGFR2). Results: The analysis of the outcome obtained shows a trend of an increase in circulating CD45 ?CD34 + CMCs and a reduction in CMC population defined as CD14 +CD309 + and CD14 +CD309 +Tie 2+ in known asymptomatic CAD patients in comparison with healthy volunteers. Substantial correlations between CD45 ?CD34 + and conventional cardiovascular risk factors (hs-CRP, T2DM, serum uric acid and hypertension) were found in the patient cohort. The concentrations of CD14 +CD309 + and CD14 +CD309 +Tie 2+ CMCs had effect on such factors as T2DM (RR = 1.21; 95% CI = 1.10–1.40; p = 0.008), hs-CRP > 2.54 mg/L (RR = 1.29; 95% CI = 1.12–1.58; p = 0.006), Agatston score index (RR = 1.20; 95% CI = 1.15–1.27; p = 0.034), and occurrence of three and more cardiovascular risk factors (RR = 1.31; 95% CI = 1.12–1.49; p = 0.008). Conclusion: It is postulated that the reduction in circulating CD14 +CD309 + and CD14 +CD309 +Tei 2+ CMCs is related to a number of cardiovascular risk factors in asymptomatic patients with known CAD.

References

[1]  Krankel, N.; Adams, V.; Linke, A.; Gielen, S.; Erbs, S.; Lenk, K.; Schuler, G.; Hambrecht, R. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 698–703, doi:10.1161/01.ATV.0000156401.04325.8f.
[2]  Loomans, C.J.; de Koning, E.J.; Staal, F.J.; Rookmaaker, M.B.; Verseyden, C.; de Boer, H.C.; Verhaar, M.C.; Braam, B.; Rabelink, T.J.; van Zonneveld, A.J. Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 2004, 53, 195–199.
[3]  Singh, N.; van Craeyveld, E.; Tjwa, M.; Ciarka, A.; Emmerechts, J.; Droogne, W.; Gordts, S.C.; Carlier, V.; Jacobs, F.; Fieuws, S.; et al. Circulating apoptotic endothelial cells and apoptotic endothelial microparticles independently predict the presence of cardiac allograft vasculopathy. J. Am. Coll. Cardiol. 2012, 60, 324–331, doi:10.1016/j.jacc.2012.02.065.
[4]  Sobrino, T.; Hurtado, O.; Moro, M.A.; Rodríguez-Yá?ez, M.; Castellanos, M.; Brea, D.; Moldes, O.; Blanco, M.; Arenillas, J.F.; Leira, R.; et al. The increase of circulating endothelial progenitor cells after acute ischemic stroke is associated with good outcome. Stroke 2007, 38, 2759–2764, doi:10.1161/STROKEAHA.107.484386.
[5]  Ravi, S.; Caves, J.M.; Martinez, A.W.; Xiao, J.; Wen, J.; Haller, C.A.; Davis, M.E.; Chaikof, E.L. Effect of bone marrow-derived extracellular matrix on cardiac function after ischemic injury. Biomaterials 2012, 33, 7736–7745, doi:10.1016/j.biomaterials.2012.07.010.
[6]  George, J.; Goldstein, E.; Abashidze, S.; Deutsch, V.; Schmilovich, H.; Finkelstein, A.; Herz, I.; Miller, H.; Keren, G. Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. Eur. Heart J. 2004, 25, 1003–1008, doi:10.1016/j.ehj.2004.03.026.
[7]  Chen, J.Z.; Zhang, F.R.; Tao, Q.M.; Wang, X.X.; Zhu, J.H.; Zhu, J.H. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin. Sci. (Lond.) 2004, 107, 273–280, doi:10.1042/CS20030389.
[8]  Adams, V.; Lenk, K.; Linke, A.; Lenz, D.; Erbs, S.; Sandri, M.; Tarnok, A.; Gielen, S.; Emmrich, F.; Schuler, G.; et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 684–690, doi:10.1161/01.ATV.0000124104.23702.a0.
[9]  Banerjee, S.; Brilakis, E.; Zhang, S.; Roesle, M.; Lindsey, J.; Philips, B.; Blewett, C.G.; Terada, L.S. Endothelial progenitor cell mobilization after percutaneous coronary intervention. Atherosclerosis 2006, 189, 70–75, doi:10.1016/j.atherosclerosis.2006.04.026.
[10]  Hill, J.M.; Zalos, G.; Halcox, J.P.; Schenke, W.H.; Waclawiw, M.A.; Quyyumi, A.A.; Finkel, T. Circulating endotelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 2003, 348, 593–600, doi:10.1056/NEJMoa022287.
[11]  George, J.; Shmilovich, H.; Deutsch, V.; Miller, H.; Keren, G.; Roth, A. Comparative analysis of methods for assessment of circulating endothelial progenitor cells. Tissue Eng. 2006, 12, 331–335, doi:10.1089/ten.2006.12.331.
[12]  Vasa, M.; Fichtlscherer, S.; Aicher, A.; Adler, K.; Urbich, C.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001, 89, E1–E7, doi:10.1161/hh1301.093953.
[13]  Tamura, H.; Okamoto, S.; Iwatsuki, K.; Futamata, Y.; Tanaka, K.; Nakayama, Y.; Miyajima, A.; Hara, T. In vivo differentiation of stem cells in the aorta-gonad-mesonephros region of mouse embryo and adult bone marrow. Exp. Hematol. 2002, 30, 957–966, doi:10.1016/S0301-472X(02)00822-6.
[14]  Morishita, T.; Uzui, H.; Nakano, A.; Mitsuke, Y.; Geshi, T.; Ueda, T.; Lee, J.D. Number of endothelial progenitor cells in peripheral artery disease as a marker of severity and association with pentraxin-3, malondialdehyde-modified low-density lipoprotein and membrane type-1 matrix metalloproteinase. J. Atheroscler. Thromb. 2012, 19, 149–158, doi:10.5551/jat.10074.
[15]  Padfield, G.J.; Tura-Ceide, O.; Freyer, E.; Barclay, G.R.; Turner, M.; Newby, D.E.; Mills, N.L. Endothelial progenitor cells, atheroma burden and clinical outcome in patients with coronary artery disease. Heart 2013, 99, 791–798, doi:10.1136/heartjnl-2012-302949.
[16]  Bluemke, D.A.; Achenbach, S.; Budoff, M.; Gerber, T.C.; Gersh, B.; Hillis, L.D.; Hundley, W.G.; Manning, W.J.; Printz, B.F.; Stuber, M.; et al. Noninvasive coronary artery imaging: Magnetic resonance angiography and multidetector computed tomography angiography: A scientific statement from the American heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 2008, 118, 586–606, doi:10.1161/CIRCULATIONAHA.108.189695.
[17]  Agatston, A.S.; Janowitz, W.R. Ultrafast computed tomography in coronary screening. Circulation 1994, 89, 1908–1909, doi:10.1161/01.CIR.89.4.1908.
[18]  Budoff, M.J.; Achenbach, S.; Blumenthal, R.S.; Carr, J.J.; Goldin, J.G.; Greenland, P.; Guerci, A.D.; Lima, J.A.C.; Rader, D.J.; Rubin, G.D.; et al. Assessment of coronary artery disease by cardiac computed tomography: A scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006, 114, 1761–1791, doi:10.1161/CIRCULATIONAHA.106.178458.
[19]  Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1994, 15, 827–832.
[20]  Schiller, N.B.; Shah, P.M.; Crawford, M.; de Maria, A.; Devereux, R.; Feigenbaum, H.; Gutgesell, H.; Reichek, N.; Sahn, D.; Schnittger, I. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989, 2, 358–367.
[21]  Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612, doi:10.7326/0003-4819-150-9-200905050-00006.
[22]  Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502.
[23]  Tung, J.W.; Parks, D.R.; Moore, W.A.; Herzenberg, L.A.; Herzenberg, L.A. New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol. 2004, 110, 277–283, doi:10.1016/j.clim.2003.11.016.
[24]  Bakogiannis, C.; Tousoulis, D.; Androulakis, E.; Briasoulis, A.; Papageorgiou, N.; Vogiatzi, G.; Kampoli, A.M.; Charakida, M.; Siasos, G.; Latsios, G.; et al. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Curr. Med. Chem. 2012, 19, 2597–2604, doi:10.2174/092986712800492995.
[25]  Liew, A.; Barry, F.; O’Brien, T. Endothelial progenitor cells: Diagnostic and therapeutic considerations. Bioessays 2006, 28, 261–270, doi:10.1002/bies.20372.
[26]  Werner, N.; Nickenig, G. Influence of cardiovascular risk factors on endothelial progenitor cells: Limitations for therapy? Arterioscler. Thromb. Vasc. Biol. 2006, 26, 257–266, doi:10.1161/01.ATV.0000198239.41189.5d.
[27]  Boilson, B.A.; Kiernan, T.J.; Harbuzariu, A.; Nelson, R.E.; Lerman, A.; Simari, R.D. Circulating CD34+ cell subsets in patients with coronary endothelial dysfunction. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 489–496, doi:10.1038/ncpcardio1277.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133