全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Uncovering Spatio-Temporal Cluster Patterns Using Massive Floating Car Data

DOI: 10.3390/ijgi2020371

Keywords: spatio-temporal cluster, floating car data, scaling and urban mobility patterns

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we explore spatio-temporal clusters using massive floating car data from a complex network perspective. We analyzed over 85 million taxicab GPS points (floating car data) collected in Wuhan, Hubei, China. Low-speed and stop points were selected to generate spatio-temporal clusters, which indicated the typical stop-and-go movement pattern in real-world traffic congestion. We found that the sizes of spatio-temporal clusters exhibited a power law distribution. This implies the presence of a scaling property; i.e., they can be naturally divided into a strong hierarchical structure: long time-duration ones (a low percentage) whose values lie above the mean value and short ones (a high percentage) whose values lie below. The spatio-temporal clusters at different levels represented the degree of traffic congestions, for example the higher the level, the worse the traffic congestions. Moreover, the distribution of traffic congestions varied spatio-temporally and demonstrated a multinuclear structure in urban road networks, which suggested there is a correlation to the corresponding internal mobile regularities of an urban system.

References

[1]  Dhingra, S.L.; Gull, I. Traffic Flow Theory Historical Research Perspectives. In Proceedings of Traffic Flow Theory and Characteristics Committee (AHB45), Woods Hole, MA, USA, 8–10 July 2008.
[2]  Greenshields, B.D.; Weids, F.M. Statistics with Applications to Highway Traffic Analyses; The Eno Foundation for Highway Traffic Control: Saugatuck, CT, USA, 1952.
[3]  Greenberg, H. A Mathematical Analysis of Traffic Flow; Tunnels and Bridges Department, Project and Planning Division, Port of New York Authority: New York, NY, USA, 1958.
[4]  H?gerstrand, T. What about people in regional science? Pap. Reg. Sci. Assoc. 1970, 24, 6–21.
[5]  Haight, F.A. Towards a unified theory of road traffic. Oper. Res. 1958, 6, 813–826, doi:10.1287/opre.6.6.813.
[6]  Kalnis, P.; Mamoulis, N.; Bakiras, S. On Discovering Moving Clusters in Spatio-Temporal Data. In Proceedings of 9th International Conference on Advances in Spatial and Temporal Databases SSTD, Angra dos Reis, RJ, Brazil, 22–24 August 2005; pp. 364–381.
[7]  Kerner, B.S. The physics of traffic. Phys. World 1999, 12, 25–30.
[8]  Nagatani, T. The physics of traffic jams. Rep. Prog. Phys. 2002, 65, 1331–1386.
[9]  Doulet, J.F. Urban mobility: A new conceptual framework. Urban Plan. Forum 2004, 2, 90–92.
[10]  Bogorny, V.; Kuijpers, B.; Alvares, L.O. ST-DMQL: A semantic trajectory data mining query language. Int. J. Geogr. Inf. Sci. 2009, 23, 1245–1276.
[11]  Spaccapietra, S.; Parent, C.; Damiani, M.L.; Macedo, J.A.; Porto, F.; Vangenot, C.A. Conceptual view on trajectories. Data Knowl. Eng. 2008, 65, 126–146, doi:10.1016/j.datak.2007.10.008.
[12]  Yan, Z.; Parent, C.; Spaccapietra, S.; Chakraborty, D. A Hybrid Model and Computing Platform for Spatio-Semantic Trajectories. In Proceedings of 7th Extended Semantic Web Conference (ESWC), Heraklion, Greece, 30 May–3 June 2010.
[13]  Hwang, S.Y.; Lee, C.M.; Lee, C.H. Discovering Moving Clusters from Spatial-Temporal Databases. In Proceedings of Eighth International Conference on Intelligent Systems Design and Applications (ISDA ’08), Kaohsiung, Taiwan, 26–28 November 2008; pp. 111–114.
[14]  Rosswog, J.; Ghose, K. Detecting and Tracking Spatio-Temporal Clusters with Adaptive History Filtering. In Proceedings of IEEE International Conference on Data Mining Workshops ICDM Workshops, Binghamton, NY, USA, 15–19 December 2008; pp. 448–457.
[15]  Cao, H.; Mamoulis, N.; Cheung, D.W. Discovery of periodic patterns in spatio-temporal sequences. IEEE Trans. Knowl. Data Eng. 2007, 19, 453–467, doi:10.1109/TKDE.2007.1002.
[16]  Bazzani, A.; Giorgini, B.; Rambaldi, S.; Gallotti, R.; Giovannini, L. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. J. Stat. Mech. Theory Exp. 2010, doi:10.1088/1742-5468/2010/05/P05001.
[17]  Hoque, M.A.; Hong, X.; Dixon, B. Analysis of Mobility Patterns for Urban Taxi Cabs. In Proceedings of IEEE International Conference on Computing, Networking and Communications (IEEE ICNC), Maui, HI, USA, 30 January–2 February 2012.
[18]  Helbing, D.; Molnár, P.; Farkas, I.J.; Bolay, K. Self-organizing pedestrian movement. Environ. Plan. B Plan. Design 2001, 28, 361–383.
[19]  Helbing, D.; Nagel, K. The physics of traffic and regional development. Contemp. Phys. 2004, 45, 405–426.
[20]  Kerner, B.S. Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 1998, 81, 3797–3800.
[21]  Li, Q.; Zhang, T.; Yu, Y. Using cloud computing to process intensive floating car data for urban traffic surveillance. Int. J. Geogr. Inf. Sci. 2011, 25, 1303–1322, doi:10.1080/13658816.2011.577746.
[22]  Rozenfeld, H.D.; Rybski, D.; Gabaix, X.; Makse, H.A. The area and population of cities: New insights from a different perspective on cities. Am. Econ. Rev. 2009, 101, 2205–2225.
[23]  Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703, doi:10.1137/070710111.
[24]  Adamic, L.A. Zipf, Power-Laws, and Pareto—A Ranking Tutorial. Available online: http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html (accessed on 1 January 2013).
[25]  Adamic, L. Unzipping Zipf’s law. Nature 2011, 474, 164–165, doi:10.1038/474164a.
[26]  Jiang, B.; Liu, X. Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic information. Int. J. Geogr. Inf. Sci. 2011, 26, 215–229, doi:10.1080/13658816.2011.575074.
[27]  Liu, X.; Jiang, B. A novel approach to the identification of urban sprawl patches based on the scaling of geographic space. Int. J. Geomat. Geosci. 2012, 2, 415–429.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133