Online geoprocessing gains momentum through increased online data repositories, web service infrastructures, online modeling capabilities and the required online computational resources. Advantages of online geoprocessing include reuse of data and services, extended collaboration possibilities among scientists, and efficiency thanks to distributed computing facilities. In the field of Geographic Information Science (GIScience), two recent approaches exist that have the goal of supporting science in online environments: the geospatial cyberinfrastructure and the geoprocessing web. Due to its historical development, the geospatial cyberinfrastructure has strengths related to the technologies required for data storage and processing. The geoprocessing web focuses on providing components for model development and sharing. These components shall allow expert users to develop, execute and document geoprocessing workflows in online environments. Despite this difference in the emphasis of the two approaches, the objectives, concepts and technologies they use overlap. This paper provides a review of the definitions and representative implementations of the two approaches. The provided overview clarifies which aspects of e-Science are highlighted in approaches differentiated in the geographic information domain. The discussion of the two approaches leads to the conclusion that synergies in research on e-Science environments shall be extended. Full-fledged e-Science environments will require the integration of approaches with different strengths.
References
[1]
Brennan, J.; Lee, H.J.; Yang, M.; Folk, M.; Pourmal, E. Working with NASA’s HDF and HDF-EOS earth science data formats. Earth Obs. 2013, 25, 16–19.
[2]
European Parliament and Council. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 Establishing An Infrastructure for Spatial Information in the European Community (INSPIRE); Official Journal of the European Union: Luxembourg, 2007.
[3]
Group on Earth Observation (GEO). The Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan; Group on Earth Observation: Geneva, Switzerland, 2005.
[4]
Yue, P.; Gong, J.; Di, L.; He, L.; Wei, Y. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure. Geoinformatica 2011, 15, 273–303, doi:10.1007/s10707-009-0096-1.
[5]
Dadi, U.; Di, L. Creating Web Service Interfaces and Scientific Workflows Using Command Line Tools: A GRASS Example. In Proceedings of the 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–6.
[6]
Craglia, M.; Nativi, S.; Díaz, L.; Vaccari, L. Towards Multi-Disciplinary Interoperability: The EuroGEOSS Contribution. In Proceedings of EuroGEOSS—Advancing the Vision of GEOSS Conference (EuroGEOSS 2012), Madrid, Spain, 25–27 January 2012.
[7]
Janowicz, K.; Hitzler, P. The digital earth as knowledge engine. Semant. Web 2012, 3, 213–221.
[8]
Craglia, M.; de Bie, K.; Jackson, D.; Pesaresi, M.; Remetey-Fül?pp, G.; Wang, C.; Annoni, A.; Bian, L.; Campbell, F.; Ehlers, M.; et al. Digital earth 2020: Towards the vision for the next decade. Int. J. Digit. Earth 2011, 5, 4–21.
[9]
Gore, A. The Digital Earth: Understanding Our Planet in the 21st Century. In Presented at the California Science Center, Los Angeles, CA, USA, 31 January 1998.
[10]
Fook, K.D.; Vieira Monteiro, A.M.; C?mara, G.; Casanova, M.A.; Amaral, S. Geoweb services for sharing modelling results in biodiversity networks. Trans. GIS 2009, 13, 379–399, doi:10.1111/j.1467-9671.2009.01170.x.
[11]
Gray, J. E-Science: A Transformed Scientific Method. In The Fourth Paradigm: Data-Intensive Scientific Discovery, 2009 ed.; Hey, T., Tansley, S., Tolle, K., Eds.; Microsoft: Redmond, WA, USA, 2009; pp. 16–31.
[12]
Stewart, C.A.; Link, M.; Simms, S.; Hancock, D.Y.; Plale, B.; Fox, G.C. What is Cyberinfrastructure? In Proceedings of ACM SIGUCCS Fall Conference on User Services 2010 (ACM 2010), Norfolk, VA, USA, 24–27 October 2010; pp. 37–44.
Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial cyberinfrastructure: Past, present and future. Comput. Environ. Urban Syst. 2010, 34, 264–277, doi:10.1016/j.compenvurbsys.2010.04.001.
[15]
Zhao, P.; Foerster, T.; Yue, P. The geoprocessing web. Comput. Geosci. 2012, 47, 3–12, doi:10.1016/j.cageo.2012.04.021.
[16]
National Science Foundation (NSF). Revolutionizing Science and Engineering through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure. No. cise051203; NSF: Arlington, VA, USA, 2003; p. 84.
[17]
Scharl, A.; Tochtermann, K. The Geospatial Web: How Geobrowsers, Social Software and the Web 2. 0 Are Shaping the Network Society; Springer: London, UK, 2007.
[18]
Egenhofer, M.J. Toward the Semantic Geospatial Web. In Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, Mclean, VA, USA, 8–9 November 2002; pp. 1–4.
Bernard, L.; M?s, S.; Müller, M.; Henzen, C.; Brauner, J. Scientific geodata infrastructures: Challenges, approaches and directions. Int. J. Digit. Earth 2013, doi:10.1080/17538947.2013.781244.
[21]
Zhang, T.; Tsou, M.-H.; Qiao, Q.; Xu, L. Building an intelligent geospatial cyberinfrastructure: an analytical problem solving approach. Proc. SPIE 2006, 6420, 64200A:1–64200A:14.
[22]
Kiehle, C. Business logic for geoprocessing of distributed geodata. Comput. Geosci. 2006, 32, 1746–1757, doi:10.1016/j.cageo.2006.04.002.
[23]
Zhang, T.; Tsou, M.-H. Developing a grid-enabled spatial web portal for Internet GIServices and geospatial cyberinfrastructure. Int. J. Geogr. Inf. Sci. 2009, 23, 605–630, doi:10.1080/13658810802698571.
[24]
Sch?ffer, B.; Baranski, B.; Foerster, T. Towards Spatial Data Infrastructures in the Clouds. In Geospatial Thinking; Painho, M., Santos, M.Y., Pundt, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 399–418.
[25]
Yu, J.J.; Qin, X.S.; Larsen, L.C.; Larsen, O.; Jayasooriya, A.; Shen, X.L. A GIS-based management and publication framework for data handling of numerical model results. Adv. Eng. Softw. 2012, 45, 360–369.
[26]
Jaeger, E.; Altintas, I.; Zhang, J.; Lud?scher, B.; Pennington, D.; Michener, W. A Scientific Workflow Approach to Distributed Geospatial Data Processing Using Web Services. In Proceedings of The 17th International Conference on Scientific and Statistical Database Management, Santa Barbara, CA, USA, 27–29 June 2005; pp. 87–90.
[27]
Dubois, G.; Sk?ien, J.; de Jesus, J.; Peedell, S.; Hartley, A.; Nativi, S.; Santoro, M.; Geller, G. eHabitat: A Contribution to the Model Web for Habitat Assessments and Ecological Forecasting. In Proceedings of The 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011.
[28]
Brauner, J.; Foerster, T.; Schaeffer, B.; Baranski, B. Towards a Research Agenda for Geoprocessing Services. In Proceedings of 12th AGILE International Conference on Geographic Information Science, Hannover, Germany, 2–5 June 2009.
[29]
Friis-Christensen, A.; Ostl?nder, N.; Lutz, M.; Bernard, L. Designing service architectures for distributed geoprocessing: Challenges and future directions. Trans. GIS 2007, 11, 799–818, doi:10.1111/j.1467-9671.2007.01075.x.
[30]
Schade, S.; Ostl?nder, N.; Canut, C.G.; Schulz, M.; McInerney, D.; Dubois, G.; Vaccari, L.; Chinosi, M.; Sánchez, L.D.; Bastin, L.; et al. Which Service Interfaces fit the Model Web? In Proceedings of GeoProcessing 2012: The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services, Valencia, Spain, 30 January–4 February 2012.
[31]
Poore, B.S. Users as Essential Contributors to Spatial Cyberinfrastructures. In Proceedings of the National Academy of Sciences of the United States of America, Washington, DC, USA, 5 April 2011; 108, pp. 5510–5515.
[32]
Foster, I.; Kesselman, C. The Grid: Blueprint for a New Computing Infrastructure; Morgen Kaufmann: San Francisco, CA, USA, 1998.
[33]
Yang, C.A.; Goodchild, M.B.; Huang, Q.A.; Nebert, D.C.; Raskin, R.D.; Xu, Y.E.; Bambacus, M.F.; Fay, D.E. Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011, 4, 305–329, doi:10.1080/17538947.2011.587547.
[34]
Yang, C.; Raskin, R. Introduction to distributed geographic information processing research. Int. J. Geogr. Inf. Sci. 2009, 23, 553–560, doi:10.1080/13658810902733682.
[35]
Minsker, B.; Myers, J.; Marikos, M.; Wentling, T.; Downey, S.; Liu, Y.; Bajcsy, P.; Kooper, R.; Marini, L.; Contractor, N.; et al. NCSA Environmental Cyberinfrastructure Demonstration Project: Creating Cyber Environments for Environmental Engineering and Hydrological Science Communities. In Proceedings of 2006 ACM/IEEE Conference on Supercomputing (SC’06-ACM 2006), Tampa, FL, USA, 11–17 November 2006.
[36]
Agrawal, G.; Ferhatosmanoglu, H.; Niu, X.; Bedford, K.; Li, R. A Vision for cyberinfrastructure for coastal forecasting and change analysis. Lect. Note. Comput. Sci. 2006, 4540, 151–174.
Di, L. GeoBrain-A Web Services Based Geospatial Knowledge Building System. In Proceedings of NASA’s Earth Science Technology Conference (ESTC 2004), Greenbelt, MD, USA, 2004; pp. 22–24.
[39]
Farres, J. G-Pod ESA Grid Processing on Demand for Working Scientists; ESRIN: Frascati, Italy, 2010.
[40]
ESA Grid Processing on Demand (G-POD). Available online: http://gpod.eo.esa.int/ (accessed on 12 July 2013).
[41]
Han, W.; Di, L.; Zhao, P.; Wei, Y.; Li, X. Design and Implementation of GeoBrain Online Analysis System (GeOnAS). In Proceedings of Web and Wireless Geographical Information System 2008 (W2GIS 2008), Shanghai, China, 11–12 December 2008; 5373, pp. 27–36.
[42]
GeOnAs. Available online: http://geobrain.laits.gmu.edu/OnAS/ (accessed on 12 July 2013).
[43]
Hobona, G.; Fairbairn, D.; Hiden, H.; James, P. Orchestration of grid-enabled geospatial web services in geoscientific workflows. IEEE Trans. Autom. Sci. Eng. 2010, 7, 407–411, doi:10.1109/TASE.2008.2010626.