Groundwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (PCA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island’s hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island’s water types into Ca-HCO 3 water type, Na-HCO 3 water type, Na-SO 4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question.
References
[1]
Arslan, H. Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environ. Monit. Assess. 2013, 185, 2439–2452.
[2]
Trabelsi, R.; Zairi, M.; Dhia, H.B. Groundwater salinization of the Sfax superficial aquifer, Tunisia. Hydrogeol. J. 2007, 15, 1341–1355.
[3]
Aris, A.Z.; Abdullah, M.H.; Ahmed, A.; Woong, K.K. Controlling factors of groundwater hydrochemistry in a small Island’s aquifer. Int. J. Environ. Sci. Tech. 2007, 4, 441–450.
[4]
Praveena, S.M.; Abdullah, M.H.; Bidin, K.; Aris, A.Z. Understanding of groundwater salinity using statistical modeling in a small tropical island, East Malaysia. Environmentalist 2011, 31, 279–287.
[5]
Aris, A.Z.; Abdullah, M.H.; Woong, K.K.; Praveena, S.M. Hydrochemical changes in small tropical island’s aquifer: Manukan Island, Sabah, Malaysia. Environ. Geol. 2009, 56, 1721–1732.
[6]
Mohapatra, P.; Vijay, R.; Pujari, P.; Sundaray, S.; Mohanty, B. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: A multivariate statistical approach. Water Sci. Tech. 2011, 64, 809–817, doi:10.2166/wst.2011.605.
[7]
Singh, C.K.; Shashtri, S.; Mukherjee, S. Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environ. Earth Sci. 2011, 62, 1387–1405.
[8]
Belkhiria, L.; Mounib, L.; Boudoukha, A. Geochemical evolution of groundwater in an alluvial aquifer: Case of El Eulma aquifer, East Algeria. J. Afr. Earth Sci. 2012, 66, 46–55, doi:10.1016/j.jafrearsci.2012.03.001.
[9]
Akbal, F.; Gürel, L.; Bahad?r, T.; Güler, ?.; Bakan, G.; Büyükgüng?r, H. Water and sediment quality assessment in the mid-Black Sea coast of Turkey using multivariate statistical techniques. Environ. Earth Sci. 2011, 64, 1387–1395.
[10]
Glynn, P.D.; Plummer, L.N. Geochemistry and the understanding of ground-water systems. Hydrogeol. J. 2005, 13, 263–287, doi:10.1007/s10040-004-0429-y.
[11]
Aris, A.Z.; Abdullah, M.H.; Woong, K.K. Hydrogeochemistry of groundwater in Manukan Island, Sabah. Malays. J. Anal. Sci. 2007, 11, 407–413.
[12]
Jalali, M. Application of Multivariate analysis to study water chemistry of groundwater in a semi-arid aquifer, Malayer, Western Iran. Desalination Water Treat. 2010, 19, 307–317.
[13]
Singh, E.J.K.; Gupta, A.; Singh, N.R. Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data. Environ. Sci. Pollut. Res. 2012, doi:10.1007/s11356-012-1127-2.
[14]
Tlili-Zrelli, B.; Hamzaoui-Azaza, F.; Gueddari, M.; Bouhlila, R. Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (Northeastern Tunisia). Arab. J. Geosci. 2012, doi:10.1007/s12517-012-0617-3.
[15]
Shyu, G.-S.; Cheng, B.-Y.; Chiang, C.-T.; Yao, P.-H.; Chang, T.-K. Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. Int. J. Environ. Res. Public Health 2011, 8, 1084–1109.
[16]
White, I.; Falkland, T.; Perez, P.; Dray, A.; Metutera, T.; Metai, E.; Overmars, M. Challenges in freshwater management in low coral atolls. J. Cleaner Prod. 2007, 15, 1522–1528.
[17]
Isa, N.M.; Aris, A.Z.; Sulaiman, W.N.A. Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Sci. Total Environ. 2012, 438, 414–425.
[18]
Abdullah, M. Geological Survey Report of Kapas Island; Geological Survey Headquaters: Terengganu, Malaysia, 1981.
[19]
Association, A.W.W.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005.
[20]
Parizi, H.S.; Samani, N. Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area (Iran) using multivariate statistical techniques. Environ. Earth Sci. 2012, doi:10.1007/s12665-012-2005-4.
[21]
Ranjan, R.K.; Ramanathan, A.; Parthasarathy, P.; Kumar, A. Hydrochemical charasteristics of groundwater in the plains of Phalgu River in Gaya, Bihar, India. Arab. J. Geosci. 2012, doi:10.1007/s12517-012-0599-1.
[22]
Smith, L.I. A Tutorial on Principal Component Analysis. Available online: http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf (accessed on 17 November 2012).
[23]
Pitk?nen, P.; Partamies, S.; Luukkonen, A. Hydrogeochemical Interpretation of Baseline Groundwater Conditions at the Olkiluoto Site; Posiva: Olkiluoto, Finland, 2004.
[24]
Farnhama, I.; Johannessonb, V.; Singhc, A.; Hodged, V.; Stetzenbach, K. Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal. Chim. Acta 2003, 490, 123–138, doi:10.1016/S0003-2670(03)00350-7.
[25]
Guildford, J.P. Fundamental Statistics in Psychology and Education; McGraw-Hill: New York, NY, USA, 1973.
[26]
Mustapha, A.; Aris, A.Z. Multivariate statistical analysis and environmental modeling of heavy metals pollution by industies. Pol. J. Environ. Stud. 2012, 21, 1359–1367.
[27]
Mohapatra, P.; Vijay, R.; Pujari, P.; Sundaray, S.; Mohanty, B. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: A multivariate statistical approach. Water Sci. Tech. 2011, 64, 809–817, doi:10.2166/wst.2011.605.
[28]
Nelson, D. Natural Variations in the Composition of Groundwater; Drinking Water Program Oregon Department of Human Services: Springfield, OR, USA, 2002.
[29]
Abrahams, R.H.; Loague, K. A compartmentalized solute transport model for redox zones in contaminated aquifers: 2. Field-scale simulations. Water Resour. Res. 2008, 36, 2015–2029, doi:10.1029/2000WR900111.
[30]
Mor, S.; Singh, S.; Yadav, P.; Rani, V.; Rani, P.; Sheoran, M.; Singh, G.; Ravindra, K. Appraisal of salinity and fluride in a semi-arid region of India using statistical and multivariate techniques. Environ. Geochem. Health 2009, 31, 643–655, doi:10.1007/s10653-008-9222-5.
[31]
Sundaray, S.K. Application of multivariate statistical techniques in hydrogeological studies—A case study of Brahmani-Koel River (India). Environ. Monit. Assess. 2010, 164, 297–310, doi:10.1007/s10661-009-0893-x.
[32]
Wollast, R.; Mackenzie, F. Global Cycle of Silica. In Silicon Geochemistry and Biogeochemistry; Academic: New York, NY, USA, 1983; pp. 39–76.
[33]
Panteleit, B.; Kessels, W.; Kantor, W.; Schulz, H. Geochemical Characteristics of Salinization-Zones in the Coastal Aquifer Test Field (CAT-Field) in North-Germany. In Proceeding of 5th International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management, Essaouira, Morocco, 23–25 April 2001.
[34]
Thilagavathi, R.; Chidambaram, S.; Prasanna, M.V.; Thivya, C.; Singaraja, C. A study of groundwater geochemistry in layered aquifers system of Pondicherry region, southeast India. Appl. Water Sci. 2012, 2, 253–269, doi:10.1007/s13201-012-0045-2.
[35]
Chidambaram, S.; Anandhan, P.; Prasanna, M.V.; Srinivasamoorthy, K.; Vasanthavigar, M. Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arab. J. Geosci. 2012, doi:10.1007/ s12517-012-0589-3.
[36]
Srinivasamoorthy, K.; Chidambaram, S.; Prasanna, M.V.; Vasanthavihar, M.; Peter, J.; Anandhan, P. Identification of major sources controlling groundwater chemistry from a hard rock terrain—A case study from Mettur taluk, Salem district, Tamil Nadu, India. J. Earth Syst. Sci. 2008, 117, 49–58.
[37]
Deutsch, W.J. Groundwater Geochemistry: Fundamentals and Applications to Contamination; Lewis: New York, NY, USA, 1997.
[38]
Pathak, H.; Limaye, S.N. Study of seasonal variation in groundwater quality of sagar city (India) by principal component analysis. J. Chem. 2011, 8, 2000–2009.
[39]
Abdi, H. Factor Rotations in Factor Analyses. In Encyclopedia of Social Science Research Methods; SAGE: Thousand Oaks, CA, USA, 2003; pp. 1–4.
[40]
Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151, doi:10.1177/001316446002000116.
[41]
O’Rourke, N.; Hatcher, L.; Stepanski, E.J. A Step-by-Step Approach to Using SAS for Univariate & Multivariate Statistics, 2nd ed.; SAS Publishing: Cary, NC, USA, 2005.
[42]
Yidana, S.M.; Yakubo, B.B.; Akabzaa, T.M. Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J. Afr. Earth Sci. 2010, 58, 220–234, doi:10.1016/j.jafrearsci.2010.03.003.
[43]
Suk, H.; Lee, K.-K. Characterization of a water hydrochemical system through multivariate analysis: Clustering into groundwater zones. Groudwater 1999, 37, 358–366, doi:10.1111/j.1745-6584.1999.tb01112.x.
[44]
Kumaresan, P.R.M. Factor analysis and linear regression model (LRM) of metal speciation and physico-chemical characters of groundwater samples. Environ. Monit. Assess. 2008, 138, 65–79, doi:10.1007/s10661-007-9761-8.
[45]
Kehew, E.A. Applied Chemical Hydrogeology; Prentice Hall: Upper Saddle River, NJ, USA, 2000.
[46]
Dia, A.; Gruau, G.; Olivié-Lauquet, G.; Riou, C.; Molénat, J.; Curmi, P. The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Ac. 2000, 64, 4131–4151, doi:10.1016/S0016-7037(00)00494-4.
[47]
Morales, L.A.; Paz-Ferreiro, J.; Vieira, S. R.; Vázquez, E.V. Spatial and temporal variability of Eh and pH over a rice field as related to lime addition. Bragantia 2010, 69, 67–76, doi:10.1590/S0006-87052010000500008.
[48]
Mann, A.G.; Tam, C.C.; Craig, H.D.; Rodrigues, L.C. The association between drinking water turbidity and gastrointestinal illness: A systematic review. BMC Public Health 2007, 256, 1–7.
[49]
Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233.
[50]
Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water Analysis; U.S. Department of the Interior, Geological Survey, Water Resources Division, Ground Water Branch: Washington, DC, USA, 1953.
[51]
McArthur, J.; Sikdar, P.; Hoque, M.; Ghosal, U. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Sci. Total Environ. 2012, 437, 390–402.