全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lung Deposition Analyses of Inhaled Toxic Aerosols in Conventional and Less Harmful Cigarette Smoke: A Review

DOI: 10.3390/ijerph10094454

Keywords: conventional or less harmful cigarettes, aerosol toxicology, cigarette smoke droplet/vapor deposition, second-hand smoke, impact analysis, computational fluid-particle dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inhaled toxic aerosols of conventional cigarette smoke may impact not only the health of smokers, but also those exposed to second-stream smoke, especially children. Thus, less harmful cigarettes (LHCs), also called potential reduced exposure products (PREPs), or modified risk tobacco products (MRTP) have been designed by tobacco manufacturers to focus on the reduction of the concentration of carcinogenic components and toxicants in tobacco. However, some studies have pointed out that the new cigarette products may be actually more harmful than the conventional ones due to variations in puffing or post-puffing behavior, different physical and chemical characteristics of inhaled toxic aerosols, and longer exposure conditions. In order to understand the toxicological impact of tobacco smoke, it is essential for scientists, engineers and manufacturers to develop experiments, clinical investigations, and predictive numerical models for tracking the intake and deposition of toxicants of both LHCs and conventional cigarettes. Furthermore, to link inhaled toxicants to lung and other diseases, it is necessary to determine the physical mechanisms and parameters that have significant impacts on droplet/vapor transport and deposition. Complex mechanisms include droplet coagulation, hygroscopic growth, condensation and evaporation, vapor formation and changes in composition. Of interest are also different puffing behavior, smoke inlet conditions, subject geometries, and mass transfer of deposited material into systemic regions. This review article is intended to serve as an overview of contributions mainly published between 2009 and 2013, focusing on the potential health risks of toxicants in cigarette smoke, progress made in different approaches of impact analyses for inhaled toxic aerosols, as well as challenges and future directions.

References

[1]  Ingebrethsen, B.J. Evolution of the particle size distribution of mainstream cigarette smoke during a puff. Aerosol Sci. Technol. 1986, 5, 423–433, doi:10.1080/02786828608959106.
[2]  Ingebrethsen, B.J.; Alderman, S.L.; Ademe, B. Coagulation of mainstream cigarette smoke in the mouth during puffing and inhalation. Aerosol Sci. Technol. 2011, 45, 1422–1428, doi:10.1080/02786826.2011.596863.
[3]  Patskan, G.; Reininghaus, W. Toxicological evaluation of an electrically heated cigarette. Part 1: Overview of technical concepts and summary of findings. J. Appl. Toxicol. 2003, 23, 323–328, doi:10.1002/jat.923.
[4]  Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke; CRC press: Boca Raton, FL, USA, 2013.
[5]  Fowles, J.; Dybing, E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control 2003, 12, 424–430, doi:10.1136/tc.12.4.424.
[6]  FDA harmful and potentially harmful constituents in tobacco products and tobacco smoke. Establ. List Fed. Register 2012, 77, 20034–20037.
[7]  Church, T.R.; Anderson, K.E.; Caporaso, N.E.; Geisser, M.S.; Le, C.T.; Zhang, Y.; Benoit, A.R.; Carmella, S.G.; Hecht, S.S. A prospectively measured serum biomarker for a tobacco-specific carcinogen and lung cancer in smokers. Cancer Epidemiol. Biomark. Prev. 2009, 18, 260–266, doi:10.1158/1055-9965.EPI-08-0718.
[8]  Goniewicz, M.?.; Czoga?a, J.; Ko?mider, L.; Koszowski, B.; Zielińska-Danch, W.; Sobczak, A. Exposure to carbon monoxide from second-hand tobacco smoke in Polish pubs. Cent. Eur. J. Public Health 2009, 17, 220–222.
[9]  Al-Sayed, E.M.; Abrahim, K.S. Second-hand tobacco smoke and children. Toxicol. Ind. Health 2012, 5, doi:10.1177/0748233712462473.
[10]  Yang, G. Marketing ‘less harmful, low-tar’ cigarettes is a key strategy of the industry to counter tobacco control in China. Tob. Control 2013, doi:10.1136/tobaccocontrol-2012-050691.
[11]  Trtchounian, A.; Williams, M.; Talbot, P. Conventional and electronic cigarettes (e-cigarettes) have different smoking characteristics. Nicotine Tob. Res. 2010, 12, 905–912, doi:10.1093/ntr/ntq114.
[12]  Zhang, Z.; Kleinstreuer, C.; Hyun, S. Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. J. Aerosol Sci. 2012, 46, 34–52, doi:10.1016/j.jaerosci.2011.12.002.
[13]  Zhang, Z.; Kleinstreuer, C.; Feng, Y. Vapor deposition during cigarette smoke inhalation in a subject-specific human airway model. J. Aerosol Sci. 2012, 50, 40–60.
[14]  Kolanjiyil, A.V.; Kleinstreuer, C. Nanoparticle mass transfer from lung airways to systemic regions—Part I: Lung aerosol dynamics. J. Biomech. Eng. ASME 2013. in press.
[15]  Kolanjiyil, A.V.; Kleinstreuer, C. Nanoparticle mass transfer from lung airways to systemic regions—Part II: Multi-compartmental modeling. J. Biomech. Eng. ASME 2013. in press.
[16]  Polosa, R.; Thomson, N.C. Smoking and asthma: Dangerous liaisons. Eur. Respir. J. 2013, 41, 716–726, doi:10.1183/09031936.00073312.
[17]  Goldklang, M.P.; Marks, S.M.; D’Armiento, J.M. Second hand smoke and COPD: Lessons from animal studies. Front. Physiol. 2013, 4, 1–8.
[18]  Vestbo, J.; Edwards, L.D.; Scanlon, P.D.; Yates, J.C.; Agusti, A.; Bakke, P.; Calverley, P.M.; Celli, B.; Coxson, H.O.; Crim, C. Changes in forced expiratory volume in 1 second over time in COPD. N. Engl. J. Med. 2011, 365, 1184–1192, doi:10.1056/NEJMoa1105482.
[19]  Chalouhi, N.; Ali, M.S.; Starke, R.M.; Jabbour, P.M.; Tjoumakaris, S.I.; Gonzalez, L.F.; Rosenwasser, R.H.; Koch, W.J.; Dumont, A.S. Cigarette smoke and inflammation: Role in cerebral aneurysm formation and rupture. Mediat. Inflamm. 2012, 2012, 271582:1–271582:12.
[20]  Huxley, R.R.; Woodward, M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: A systematic review and meta-analysis of prospective cohort studies. Lancet 2011, 378, 1297–1305, doi:10.1016/S0140-6736(11)60781-2.
[21]  Barua, R.S.; Ambrose, J.A. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1460–1467, doi:10.1161/ATVBAHA.112.300154.
[22]  Csordas, A.; Bernhard, D. The biology behind the atherothrombotic effects of cigarette smoke. Nat. Rev. Cardiol. 2012, 10, 219–230, doi:10.1038/nrcardio.2013.8.
[23]  Reynolds, P. Smoking and breast cancer. J. Mammary Gland Biol. Neoplasia 2013, 18, 15–23, doi:10.1007/s10911-012-9269-x.
[24]  Xue, F.; Willett, W.C.; Rosner, B.A.; Hankinson, S.E.; Michels, K.B. Cigarette smoking and the incidence of breast cancer. Arch. Intern. Med. 2011, 171, 125–133, doi:10.1001/archinternmed.2010.503.
[25]  Anderson, L.N.; Cotterchio, M.; Mirea, L.; Ozcelik, H.; Kreiger, N. Passive cigarette smoke exposure during various periods of life, genetic variants, and breast cancer risk among never smokers. Am. J. Epidemiol. 2012, 175, 289–301, doi:10.1093/aje/kwr324.
[26]  McAughey, J.; Adam, T.; McGrath, C.; Mocker, C.; Zimmermann, R. Simultaneous On-Line Size and Chemical Analysis of Gas Phase and Particulate Phase of Mainstream Tobacco Smoke. J. Phys. Conf. Ser. 2009, 151, doi:10.1088/1742-6596/151/1/012017.
[27]  Narkowicz, S.; Polkowska, ?.; Kie?bratowska, B.; Namie?nik, J. Environmental tobacco smoke: Exposure, health effects, and analysis. Crit. Rev. Environ. Sci. 2013, 43, 121–161, doi:10.1080/10643389.2011.604253.
[28]  Haustein, K.; Groneberg, D. Tobacco or Health?; Springer: New York, NY, USA, 2010.
[29]  Piadé, J.; Wajrock, S.; Jaccard, G.; Janeke, G. Formation of mainstream cigarette smoke constituents prioritized by the World Health Organization-yield patterns observed in market surveys, clustering and inverse correlations. Food Chem. Toxicol. 2013, 55, 329–347, doi:10.1016/j.fct.2013.01.016.
[30]  Burns, D.; Dybing, E.; Gray, N.; Hecht, S.; Anderson, C.; Sanner, T.; O’Connor, R.; Djordjevic, M.; Dresler, C.; Hainaut, P. Mandated lowering of toxicants in cigarette smoke: A description of the World Health Organization TobReg proposal. Tob. Control 2008, 17, 132–141, doi:10.1136/tc.2007.024158.
[31]  Hecht, S.S.; Yuan, J.; Hatsukami, D. Applying tobacco carcinogen and toxicant biomarkers in product regulation and cancer prevention. Chem. Res. Toxicol. 2010, 23, 1001–1008, doi:10.1021/tx100056m.
[32]  Borgerding, M.; Klus, H. Analysis of complex mixtures—Cigarette smoke. Exp. Toxicol. Pathol. 2005, 57, 43–73, doi:10.1016/j.etp.2005.05.010.
[33]  Sureda, X.; Fernández, E.; López, M.J.; Nebot, M. Second-hand tobacco smoke exposure in open and semi-open settings: A systematic review. Environ. Health Perspect. 2013, 121, 766–773, doi:10.1289/ehp.1205806.
[34]  Jones, L.L.; Hassanien, A.; Cook, D.G.; Britton, J.; Leonardi-Bee, J. Parental smoking and the risk of middle ear disease in children: A systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 2012, 166, 18–27, doi:10.1001/archpediatrics.2011.158.
[35]  Apostolou, A.; Garcia-Esquinas, E.; Fadrowski, J.J.; McLain, P.; Weaver, V.M.; Navas-Acien, A. Secondhand tobacco smoke: A source of lead exposure in US children and adolescents. J. Inf. 2012, 102, 714–722.
[36]  Valenti, V.E.; Vanderlei, L.C.M.; Ferreira, C.; Fonseca, F.L.; Oliveira, F.R.; Sousa, F.H.; Rodrigues, L.M.; Monteiro, C.B.; Adami, F.; Wajnsztejn, R. Sidestream cigarette smoke and cardiac autonomic regulation. Int. Arch. Med. 2013, 6, 11, doi:10.1186/1755-7682-6-11.
[37]  Flouris, A.D.; Vardavas, C.I.; Metsios, G.S.; Tsatsakis, A.M.; Koutedakis, Y. Biological evidence for the acute health effects of secondhand smoke exposure. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298, L3–L12, doi:10.1152/ajplung.00215.2009.
[38]  Jefferis, B.; Lawlor, D.; Ebrahim, S.; Wannamethee, S.; Feyerabend, C.; Doig, M.; McMeekin, L.; Cook, D.; Whincup, P. Cotinine-assessed second-hand smoke exposure and risk of cardiovascular disease in older adults. Heart 2010, 96, 854–859, doi:10.1136/hrt.2009.191148.
[39]  Schick, S.; Glantz, S. Philip Morris toxicological experiments with fresh sidestream smoke: More toxic than mainstream smoke. Tob. Control 2005, 14, 396–404, doi:10.1136/tc.2005.011288.
[40]  Schick, S.F.; Farraro, K.F.; Fang, J.; Nasir, S.; Kim, J.; Lucas, D.; Wong, H.; Balmes, J.; Giles, D.K.; Jenkins, B. An apparatus for generating aged cigarette smoke for controlled human exposure studies. Aerosol Sci. Technol. 2012, 46, 1246–1255, doi:10.1080/02786826.2012.708947.
[41]  Schick, S.; Glantz, S.A. Sidestream cigarette smoke toxicity increases with aging and exposure duration. Tob. Control 2006, 15, 424–429, doi:10.1136/tc.2006.016162.
[42]  Wayne, G.F. Potential reduced exposure products (PREPs) in industry trial testimony. Tob. Control 2006, 15, iv90–iv97, doi:10.1136/tc.2004.009787.
[43]  Lippi, G.; Mattiuzzi, C.; Thun, M.; Carter, B.; Feskanich, D. Smoking-related mortality in the United States. N. Engl. J. Med. 2013, 368, 1752–1752, doi:10.1056/NEJMc1302783.
[44]  Givel, M.S. In search of the less hazardous cigarette. Int. J. Health Serv. 2011, 41, 77–94, doi:10.2190/HS.41.1.f.
[45]  Meckley, D.R.; Hayes, J.R.; van Kampen, K.; Ayres, P.H.; Mosberg, A.T.; Swauger, J.E. Comparative study of smoke condensates from 1R4F cigarettes that burn tobacco versus ECLIPSE cigarettes that primarily heat tobacco in the SENCAR mouse dermal tumor promotion assay. Food Chem. Toxicol. 2004, 42, 851–863, doi:10.1016/j.fct.2004.01.009.
[46]  Stabbert, R.; Voncken, P.; Rustemeier, K.; Haussmann, H.; Roemer, E.; Schaffernicht, H.; Patskan, G. Toxicological evaluation of an electrically heated cigarette. Part 2: Chemical composition of mainstream smoke. J. Appl. Toxicol. 2003, 23, 329–339, doi:10.1002/jat.924.
[47]  Felter, J.L.; Lee, R.E.; Solanky, A.; Blake, C.; Davis, P.; Sharpe, D.E.; Watson, M.E.; Ripley, R.L.; Stevenson, B.W.; Crowe, W.J. Electrically Heated Cigarette Smoking System with Internal Manifolding for Puff Detection. European Patent No. EP 1558098, 2 January 2013.
[48]  Adkison, S.E.; O’Connor, R.J.; Bansal-Travers, M.; Hyland, A.; Borland, R.; Yong, H.; Cummings, K.M.; McNeill, A.; Thrasher, J.F.; Hammond, D. Electronic nicotine delivery systems: International tobacco control four-country survey. Am. J. Prev. Med. 2013, 44, 207–215, doi:10.1016/j.amepre.2012.10.018.
[49]  Electronic Nicotine Delivery Systems (ENDS)/E-Cigarettes Briefing; ASH Scotland: Scotland, UK, 2012; pp. 1–13.
[50]  Laugesen, M. Health New Zealand Ltd.: Christchurch, New Zealand, 2008; pp. 1–28.
[51]  Zheng, J.; Zheng, Z. Preparation Method of E-Cigarette Liquid. European Patent No. EP 2543265, 9 January 2013.
[52]  Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PloS One 2013, 8, doi:10.1371/journal.pone.0057987.
[53]  Series, R. Electronic cigarettes—An overview. Tob. Prev. Tob. Control 2013, 19, 1–39.
[54]  Hatsukami, D.K.; Kotlyar, M.; Hertsgaard, L.A.; Zhang, Y.; Carmella, S.G.; Jensen, J.A.; Allen, S.S.; Shields, P.G.; Murphy, S.E.; Stepanov, I. Reduced nicotine content cigarettes: Effects on toxicant exposure, dependence and cessation. Addiction 2010, 105, 343–355, doi:10.1111/j.1360-0443.2009.02780.x.
[55]  Warner, K.E. Will the next generation of “safer” cigarettes be safer? J. Pediatr. Hematol.Oncol. 2005, 27, 543–550, doi:10.1097/01.mph.0000184574.00717.6c.
[56]  McNeill, A.; Munafò, M.R. Reducing harm from tobacco use. J. Psychopharmacol. 2013, 27, 13–18, doi:10.1177/0269881112458731.
[57]  Benowitz, N.L.; Henningfield, J.E. Reducing the nicotine content to make cigarettes less addictive. Tob. Control 2013, 22, i14–i17, doi:10.1136/tobaccocontrol-2012-050860.
[58]  Brooks, D.R.; Austin, J.H.; Heelan, R.T.; Ginsberg, M.S.; Shin, V.; Olson, S.H.; Muscat, J.E.; Stellman, S.D. Influence of type of cigarette on peripheral versus central lung cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 576–581, doi:10.1158/1055-9965.EPI-04-0468.
[59]  Laugesen, M.; Fowles, J. Marlboro ultrasmooth: A potentially reduced exposure cigarette? Tob. Control 2006, 15, 430–435, doi:10.1136/tc.2006.016055.
[60]  Chen, J.; Higby, R.; Tian, D.; Tan, D.; Johnson, M.D.; Xiao, Y.; Kellar, K.J.; Feng, S.; Shields, P.G. Toxicological analysis of low-nicotine and nicotine-free cigarettes. Toxicology 2008, 249, 194–203, doi:10.1016/j.tox.2008.05.009.
[61]  Lin, S.; Fonteno, S.; Weng, J.; Talbot, P. Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells. Toxicol. Sci. 2010, 118, 202–212, doi:10.1093/toxsci/kfq241.
[62]  Lin, S.; Tran, V.; Talbot, P. Comparison of toxicity of smoke from traditional and harm-reduction cigarettes using mouse embryonic stem cells as a novel model for preimplantation development. Hum. Reprod. 2009, 24, 386–397, doi:10.1093/humrep/den419.
[63]  Gan, Q.; Yang, J.; Yang, G.; Goniewicz, M.; Benowitz, N.L.; Glantz, S.A. Chinese “herbal” cigarettes are as carcinogenic and addictive as regular cigarettes. Cancer Epidemiol. Biomark. Prev. 2009, 18, 3497–3501, doi:10.1158/1055-9965.EPI-09-0620.
[64]  McCauley, L.; Markin, C.; Hosmer, D. An unexpected consequence of electronic cigarette useunforeseen risk of electronic cigarette use. CHEST J. 2012, 141, 1110–1113, doi:10.1378/chest.11-1334.
[65]  Chen, I. FDA summary of adverse events on electronic cigarettes. Nicotine Tob. Res. 2013, 15, 615–616, doi:10.1093/ntr/nts145.
[66]  Schripp, T.; Markewitz, D.; Uhde, E.; Salthammer, T. Does e-cigarette consumption cause passive vaping? Indoor Air 2013, 23, 25–31, doi:10.1111/j.1600-0668.2012.00792.x.
[67]  Hecht, S.S. Cigarette smoking and lung cancer: Chemical mechanisms and approaches to prevention. Lancet Oncol. 2002, 3, 461–469, doi:10.1016/S1470-2045(02)00815-X.
[68]  Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer 2003, 3, 733–744, doi:10.1038/nrc1190.
[69]  Feng, Z.; Hu, W.; Hu, Y.; Tang, M. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc. Natl. Acad. Sci. USA 2006, 103, 15404–15409, doi:10.1073/pnas.0607031103.
[70]  Landrigan, P.J.; Kimmel, C.A.; Correa, A.; Eskenazi, B. Children’s health and the environment: Public health issues and challenges for risk assessment. Environ. Health Perspect. 2004, 112, 257–265.
[71]  Landrigan, P.J.; Garg, A. Chronic effects of toxic environmental exposures on children’s health. Clin. Toxicol. 2002, 40, 449–456, doi:10.1081/CLT-120006747.
[72]  Knudsen, T.B.; Kleinstreuer, N.C. Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res. Part C 2011, 93, 312–323, doi:10.1002/bdrc.20223.
[73]  Proietti, E.; R??sli, M.; Frey, U.; Latzin, P. Air pollution during pregnancy and neonatal outcome: A review. J. Aerosol Med. Pulm. Drug Deliv. 2012, 26, 9–23.
[74]  Kit, B.K.; Simon, A.E.; Brody, D.J.; Akinbami, L.J. US prevalence and trends in tobacco smoke exposure among children and adolescents with asthma. Pediatrics 2013, 131, 407–414.
[75]  Lardi, E.; Ott, C.; Schulzki, T.; Kuhn, M.; Bonetti, P.; Reinhart, W. Acute effects of short-term exposure to second-hand smoke on induced platelet aggregation. Clin. Hemorheol. Microcirc. 2010, 45, 359–364.
[76]  Argacha, J.; Fontaine, D.; Adamopoulos, D.; Ajose, A.; van de Borne, P.; Fontaine, J.; Berkenboom, G. Acute effect of sidestream cigarette smoke extract on vascular endothelial function. J. Cardiovasc. Pharmacol. 2008, 52, 262–267, doi:10.1097/FJC.0b013e318185fa26.
[77]  Johnson, M.D.; Schilz, J.; Djordjevic, M.V.; Rice, J.R.; Shields, P.G. Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco. Cancer Epidemiol. Biomark. Prev. 2009, 18, 3263–3304, doi:10.1158/1055-9965.EPI-09-0965.
[78]  Adamson, J.; Hughes, S.; Azzopardi, D.; McAughey, J.; Ga?a, M.D. Real-time assessment of cigarette smoke particle deposition in vitro. Chem. Cent. J. 2012, 6, 1–11, doi:10.1186/1752-153X-6-1.
[79]  Pezzulo, A.A.; Starner, T.D.; Scheetz, T.E.; Traver, G.L.; Tilley, A.E.; Harvey, B.; Crystal, R.G.; McCray, P.B.; Zabner, J. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 300, L25–L31, doi:10.1152/ajplung.00256.2010.
[80]  Kaur, N.; Lacasse, M.; Roy, J.; Cabral, J.; Adamson, J.; Errington, G.; Waldron, K.C.; Ga?a, M.; Morin, A. Evaluation of precision and accuracy of the Borgwaldt RM20S? smoking machine designed for in vitro exposure. Inhal. Toxicol. 2010, 22, 1174–1183, doi:10.3109/08958378.2010.533840.
[81]  Gordon, S.; Brinkman, M.; Meng, R.; Anderson, G.; Chuang, J.; Kroeger, R.; Reyes, I.; Clark, P. Effect of cigarette menthol content on mainstream smoke emissions. Chem. Res. Toxicol. 2011, 24, 1744–1753, doi:10.1021/tx200285s.
[82]  Zhang, Y.; Sumner, W.; Chen, D. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob. Res. 2013, 15, 501–508, doi:10.1093/ntr/nts165.
[83]  Morawska, L.; Hofmann, W.; Hitchins-Loveday, J.; Swanson, C.; Mengersen, K. Experimental study of the deposition of combustion aerosols in the human respiratory tract. J. Aerosol Sci. 2005, 36, 939–957, doi:10.1016/j.jaerosci.2005.03.015.
[84]  Sahu, S.; Tiwari, M.; Bhangare, R.; Pandit, G. Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Q. Res. 2013, 13, 324–332.
[85]  McGrath, C.; Warren, N.; Biggs, P.; McAughey, J. Real-time measurement of inhaled and exhaled cigarette smoke: Implications for dose. J. Phys. Conf. Ser. 2009, 151, doi:10.1088/1742-6596/151/1/012018.
[86]  Van Dijk, W.D.; Heijdra, Y.; Lenders, J.W.; Klerx, W.; Akkermans, R.; van der Pouw, A.; van Weel, C.; Scheepers, P.T.; Schermer, T.R. Cigarette smoke retention and bronchodilation in patients with COPD. A controlled randomized trial. Respir. Med. 2012, 107, 112–119.
[87]  Yu, L.; Dzikovski, B.G.; Freed, J.H. A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke. J. Vis. Exp. 2012, 59, doi:10.3791/3406.
[88]  Roemer, E.; Schramke, H.; Weiler, H.; Buettner, A.; Kausche, S.; Weber, S.; Berges, A.; Stueber, M.; Muench, M.; Trelles-Sticken, E. Mainstream smoke chemistry and in vitro and in vivo toxicity of the reference cigarettes 3R4F and 2R4F. Beitr?ge zur Tabakforschung International 2012, 25, 316–335.
[89]  Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2013. in press.
[90]  Zenzen, V.; Diekmann, J.; Gerstenberg, B.; Weber, S.; Wittke, S.; Schorp, M.K. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 2: Smoke chemistry and in vitro toxicological evaluation using smoking regimens reflecting human puffing behavior. Regul. Toxicol. Pharmacol. 2012, 64, S11–S34, doi:10.1016/j.yrtph.2012.08.004.
[91]  Charles, F.; Krautter, G.R.; Mariner, D.C. Post-puff respiration measures on smokers of different tar yield cigarettes. Inhal. Toxicol. 2009, 21, 712–718, doi:10.1080/08958370802353443.
[92]  Alfi, M.; Talbot, P. Health-related effects reported by electronic cigarette users in online forums. J. Med. Internet Res. 2013, 15, doi:10.2196/jmir.2324.
[93]  Finlay, W.H.; Martin, A.R. Recent advances in predictive understanding of respiratory tract deposition. J. Aerosol Med. Pulm. Drug Deliv. 2008, 21, 189–206, doi:10.1089/jamp.2007.0645.
[94]  Schorp, M.K.; Tricker, A.R.; Dempsey, R. Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 1: Non-clinical and clinical insights. Regul. Toxicol. Pharmacol. 2012, 64, S1–S10, doi:10.1016/j.yrtph.2012.08.008.
[95]  Dickens, C.; McGrath, C.; Warren, N.; Biggs, P.; McAughey, J. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose. J. Phys. Conf. Ser. 2009, 151, doi:10.1088/1742-6596/151/1/012019.
[96]  Hofmann, W. Modelling inhaled particle deposition in the human lung—A review. J. Aerosol Sci. 2011, 42, 693–724, doi:10.1016/j.jaerosci.2011.05.007.
[97]  Kleinstreuer, C.; Feng, Y. Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics—A review. J. Biomech. Eng. 2013, 135, doi:10.1115/1.4023236.
[98]  Sosnowski, T.R. Importance of airway geometry and respiratory parameters variability for particle deposition in the human respiratory tract. J. Thorac. Dis. 2011, 3, 153–155.
[99]  Rostami, A.A. Computational modeling of aerosol deposition in respiratory tract: A review. Inhal. Toxicol. 2009, 21, 262–290, doi:10.1080/08958370802448987.
[100]  Kleinstreuer, C.; Zhang, Z. Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech. 2010, 42, 301–334, doi:10.1146/annurev-fluid-121108-145453.
[101]  Kleinstreuer, C. Two-Phase Flow: Theory and Applications; Taylor & Francis Group: New York, NY, USA, 2003.
[102]  Tawhai, M.H.; Hunter, P.; Tschirren, J.; Reinhardt, J.; McLennan, G.; Hoffman, E.A. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 2004, 97, 2310–2321, doi:10.1152/japplphysiol.00520.2004.
[103]  Longest, P.W.; Tian, G.; Walenga, R.L.; Hindle, M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm. Res. 2012, 29, 1670–1688, doi:10.1007/s11095-012-0691-y.
[104]  Li, Z. Particle deposition in oral-tracheal airway models with very low inhalation profiles. J. Bionic Eng. 2012, 9, 252–261, doi:10.1016/S1672-6529(11)60106-6.
[105]  Longest, P.W.; Xi, J. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci. Technol. 2008, 42, 579–602, doi:10.1080/02786820802232964.
[106]  Solomon, P.A.; Gehr, P.; Bennett, D.H.; Phalen, R.F.; Méndez, L.B.; Rothen-Rutishauser, B.; Clift, M.; Brandenberger, C.; Mühlfeld, C. Macroscopic to microscopic scales of particle dosimetry: From source to fate in the body. Air Q. Atmosphere Health 2012, 5, 169–187, doi:10.1007/s11869-011-0167-y.
[107]  Jarvis, N.; Birchall, A.; James, A.; Bailey, M.; Dorrian, M. LUDEP 2.0: Personal computer program for calculating internal doses using the ICRP Publication 66 respiratory tract model; Technical Report NRPB-SR287; NRPB: Chilton, UK, 1996.
[108]  Kane, D.B.; Asgharian, B.; Price, O.T.; Rostami, A.; Oldham, M.J. Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhal. Toxicol. 2010, 22, 199–209, doi:10.3109/08958370903161224.
[109]  Anjilvel, S.; Asgharian, B. A multiple-path model of particle deposition in the rat lung. Toxicol. Sci. 1995, 28, 41–50, doi:10.1093/toxsci/28.1.41.
[110]  Robinson, R.; Yu, C. Coagulation of cigarette smoke particles. J. Aerosol Sci. 1999, 30, 533–548, doi:10.1016/S0021-8502(98)00071-8.
[111]  Bernstein, D.M. A review of the influence of particle size, puff volume, and inhalation pattern on the deposition of cigarette smoke particles in the respiratory tract. Inhal. Toxicol. 2004, 16, 675–689, doi:10.1080/08958370490476587.
[112]  Hicks, J.; Pritchard, J.; Black, A.; Megaw, W. Experimental evaluation of aerosol growth in the human respiratory tract. In Aerosols: Formation and Reactivity; Berlin Pergamon Press: Oxford, UK, 1986; pp. 244–247.
[113]  Li, W.; Hopke, P. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci. Technol. 1993, 19, 305–316, doi:10.1080/02786829308959638.
[114]  Robinson, R.J.; Yu, C. Deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci. Technol. 2001, 34, 202–215, doi:10.1080/027868201300034844.
[115]  Tang, X.; Zheng, Z.; Jung, H.S.; Asa-Awuku, A. The effects of mainstream and sidestream environmental tobacco smoke composition for enhanced condensational droplet growth by water vapor. Aerosol Sci. Technol. 2012, 46, 760–766, doi:10.1080/02786826.2012.663949.
[116]  Sazhin, S.; Kristyadi, T.; Abdelghaffar, W.; Heikal, M. Models for fuel droplet heating and evaporation: Comparative analysis. Fuel 2006, 85, 1613–1630, doi:10.1016/j.fuel.2006.02.012.
[117]  Kim, J.W.; Xi, J.; Si, X.A. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 17–39, doi:10.1002/cnm.2490.
[118]  Sazhin, S.; Xie, J.; Shishkova, I.; Elwardany, A.; Heikal, M. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient. Int. J. Heat Mass Transfer 2013, 56, 525–537, doi:10.1016/j.ijheatmasstransfer.2012.09.046.
[119]  Vesala, T.; Kulmala, M.; Rudolf, R.; Vrtala, A.; Wagner, P.E. Models for condensational growth and evaporation of binary aerosol particles. J. Aerosol Sci. 1997, 28, 565–598, doi:10.1016/S0021-8502(96)00461-2.
[120]  Finlay, W. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction; Academic Press: London, UK, 2001.
[121]  Robinson, R.J. Carcinogen specific dosimetry model for passive smokers of various ages. Sci. Total Environ. 2005, 338, 201–212, doi:10.1016/j.scitotenv.2004.07.012.
[122]  Park, J.; Metzger, B.; Guazzelli, é.; Butler, J.E. A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech. 2010, 648, 351–362, doi:10.1017/S0022112009993909.
[123]  Sadlej, K.; Wajnryb, E.; Ekiel-Je?ewska, M.L. Hydrodynamic interactions suppress deformation of suspension drops in Poiseuille flow. J. Chem. Phys. 2010, 133, doi:10.1063/1.3457154.
[124]  Pignatel, F.; Nicolas, M.; Guazzelli, E. A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 2011, 671, 34–51, doi:10.1017/S0022112010005501.
[125]  Guazzelli, E. A Physical Introduction to Suspension Dynamics; Cambridge University Press: New York, NY, USA, 2011; Volume 45.
[126]  Lai, A.C.; Zhao, B.; Law, A.W.; Adams, E.E. Two-phase modeling of sediment clouds. Environ. Fluid Mech. 2013, doi:10.1007/s10652-013-9271-x.
[127]  Hinds, W. Aerosol Technology: Properties, Behavior, and Measurements of Aerosol Particles; Wiley-Interscience: New York, NY, USA, 1982.
[128]  Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; Wiley-Interscience: New York, NY, USA, 2012.
[129]  Broday, D.M.; Robinson, R. Application of cloud dynamics to dosimetry of cigarette smoke particles in the lungs. Aerosol. Sci. Technol. 2003, 37, 510–527, doi:10.1080/02786820300969.
[130]  Martonen, T.; Musante, C. Importance of cloud motion on cigarette smoke deposition in lung airways. Inhal. Toxicol. 2000, 12, 261–280, doi:10.1080/089583700750019602.
[131]  Asgharian, B.; Price, O.T.; Dickens, C.; McAughey, J. Coagulation and Deposition of Cigarette Smoke Particles in the Human Lung. In Presented at American Association for Aerosol Research, Oregon Convention Center, Portland, OR, USA, 2010.
[132]  Friedlander, S.K. Smoke, Dust, and Haze; Oxford University Press: New York, NY, USA, 2000; Volume 198.
[133]  Rim, D.; Green, M.; Wallace, L.; Persily, A.; Choi, J. Evolution of ultrafine particle size distributions following indoor episodic releases: Relative importance of coagulation, deposition and ventilation. Aerosol Sci. Technol. 2012, 46, 494–503, doi:10.1080/02786826.2011.639317.
[134]  Keith, C. Particle size studies on tobacco smoke. Beitrage Zur Tabakforschung Int. 1982, 11, 123.
[135]  Yu, M.; Koivisto, A.J.; H?meri, K.; Seipenbusch, M. Size Dependence of the Ratio of Aerosol Coagulation to Deposition Rates for Indoor Aerosols. Aerosol Sci. Technol. 2012, 47, 427–434.
[136]  Koolpiruck, D.; Prakoonwit, S.; Balachandran, W. Numerical modeling of inhaled charged aerosol deposition in human airways. Ind. Appl. IEEE Trans. 2004, 40, 1239–1248, doi:10.1109/TIA.2004.834032.
[137]  Wu, G.; Wang, Q.; Lian, J.; Shen, D. Reconstruction of 4D-CT from A Single Free-Breathing 3D-CT by Spatial-Temporal Image Registration. Information Processing in Medical Imaging; Springer: New York, NY, USA, 2011; pp. 686–698.
[138]  Shang, S.; Ordway, D.; Henao-Tamayo, M.; Bai, X.; Oberley-Deegan, R.; Shanley, C.; Orme, I.M.; Case, S.; Minor, M.; Ackart, D. Cigarette smoke increases susceptibility to tuberculosis—Evidence from in vivo and in vitro models. J. Infect. Dis. 2011, 203, 1240–1248, doi:10.1093/infdis/jir009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133