Brazilian freshwater fish caught from large drainages like the River Amazon represent a million ton market in expansion, which is of enormous importance for export to other continents as exotic seafood. A guarantee of bacteriological safety is required for international exports that comprise a set of different bacteria but not any Pseudomonas. However, diarrhoea, infections and even septicaemia caused by some Pseudomonas species have been reported, especially in immune-depressed patients. In this work we have employed PCR-based methodology for identifying Pseudomonas species in commercial fish caught from two different areas within the Amazon basin. Most fish caught from the downstream tributary River Tapajòs were contaminated by five different Pseudomonas species. All fish samples obtained from the River Negro tributary (Manaus markets) contained Pseudomonas, but a less diverse community with only two species. The most dangerous Pseudomonas species for human health, P. aeruginosa, was not found and consumption of these fish (from their Pseudomonas content) can be considered safe for healthy consumers. As a precautionary approach we suggest considering Pseudomonas in routine bacteriological surveys of imported seafood.
References
[1]
Saint-Paul, U.; Zuanon, J.; Villacorta-Correa, M.A.; García, M.; Fabré, N.N.; Berger, U.; Junk, W.J. Fish communities in central amazonian white- and blackwater floodplains. Environ. Biol. Fishes 2000, 57, 235–250.
[2]
Fernandes, C.C.; Podos, J.; Lundberg, J.G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 2004, 305, 1960–1962, doi:10.1126/science.1101240.
[3]
Ardura, A.; Pola, I.G.; Linde, A.R.; Garcia-Vazquez, E. DNA-based methods for species authentication of Amazonian commercial fish. Food Res. Int. 2010, 43, 2295–2302, doi:10.1016/j.foodres.2010.08.004.
[4]
FAO/WHO: Food and Agriculture Organization of the United Nations/ World Health Organization. Microbiological Risk Assessment Series. Risk Characterization of Microbiological Hazards in Food. Guidelines; WHO: Geneva, Switzerland, 2009; Volume 17, p. 116.
[5]
Sakata, T. Microflora of Healthy Animals. In Methods for the Microbiological Examination of Fish and Shellfish Chichester; Austin, B., Austin, D.A., Eds.; Ellis Horwood Ltd.: England, UK, 1989; pp. 141–163.
[6]
Gram, L.; Huss, H.H. Fresh and Processed Fish and Shellfish. In The Microbiological Safety and Quality of Foods; Lund, B.M., Baird-Parker, A.C., Gould, G.W., Eds.; Chapman & Hall: London, UK, 2000; pp. 472–506.
[7]
Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage-interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97, doi:10.1016/S0168-1605(02)00233-7.
[8]
Nyenje, M.E.; Odjadjare, C.E.; Odjadjare, L.; Tanih, N.F.; Green, E.; Ndip, R.N. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: Public health implications. Int. J. Environ. Res. Public Health 2012, 9, 2608–2619, doi:10.3390/ijerph9082608.
[9]
Bagshaw, S.M.; Laupland, K.B. Epidemiology of intensive care unit-acquired urinary tract infections. Curr. Opin. Infect. Dis. 2006, 19, 67–71, doi:10.1097/01.qco.0000200292.37909.e0.
[10]
Zilberberg, M.D.; Shorr, A.F. Epidemiology of healthcare-associated pneumonia (HCAP). Semin. Respir. Crit. Care Med. 2009, 30, 10–15, doi:10.1055/s-0028-1119804.
[11]
Mena, K.D.; Gerba, C.P. Risk assessment of Pseudomonas aeruginosa in water. Rev. Environ. Contam. Toxicol. 2009, 201, 71–115, doi:10.1007/978-1-4419-0032-6_3.
[12]
Jiwa, S.F.H.; Krovacek, K.; Wadstrom, T. Enterotoxigenic bacteria in food and water from an ethiopian community. Appl. Environ. Microbiol. 1981, 41, 1010–1019.
[13]
Jertborn, M.; Svennerholm, A.M. Enterotoxin-producing bacteria isolated from Swedish travellers with diarrhoea. Scand. J. Infect. Dis. 1991, 23, 473–479, doi:10.3109/00365549109075096.
[14]
Bockemühl, J.; Fleischer, K.; Bednarek, I. A cholera-like illness in a traveller due to a mixed infection with enterotoxigenic Escherichia coli, Vibrio parahaemolyticus and Pseudomonas aeruginosa. Infection 1983, 11, 272–274, doi:10.1007/BF01641260.
[15]
Adlard, P.A.; Kirov, S.M.; Sanderson, K.; Cox, G.E. Pseudomonas aeruginosa as a cause of infectious diarrhoea. Epidemiol. Infect. 1998, 121, 237–241, doi:10.1017/S095026889800106X.
[16]
Wong, S.; Street, D.; Delgado, S.I.; Klontz, K.C. Recalls of foods and cosmetics due to microbial contamination reported to the U.S. Food and Drug Administration. J. Food Prot. 2000, 63, 1113–1116.
[17]
Craun, G.F.; Brunkard, J.M.; Yoder, J.S.; Roberts, V.A.; Carpenter, J.; Wade, T.; Calderon, R.L.; Roberts, J.M.; Beach, M.J.; Roy, S.L. Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin. Microbiol. Rev. 2010, 23, 507–528, doi:10.1128/CMR.00077-09.
[18]
Product Inspection of Imported Fish. Csnsdian Food Inspection Agency. 2013. Available online: http://www.inspection.gc.ca/english/fssa/fispoi/import/pol/procprode.shtml (accessed on 26 August 2013).
[19]
Microbiological Criteria. Health and Consumers. European Commission. 2011. Available online: http://ec.europa.eu/food/food/biosafety/salmonella/microbio_en.htm (accessed on 26 August 2013).
[20]
Food Safety and Inspection Service. United States Department of Agriculture. Available online: http://www.fsis.usda.gov/ (accessed on 26 August 2013).
[21]
Bennett, A.R.; Greenwood, D.; Tennant, C.; Banks, J.G.; Betts, R.P. Rapid and definitive detection of Salmonella in foods by PCR. Lett. Appl. Microbiol. 1998, 26, 437–441.
[22]
Wang, R.-F.; Cao, W.W.; Cerniglia, C.E. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J. Appl. Microbiol. 1997, 83, 727–736.
[23]
Estoup, A.; Largiader, C.R.; Perrot, E.; Chourrout, D. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol. Mar. Biol. Biotechnol. 1996, 5, 295–298.
[24]
Spilker, T.; Coenye, T.; Vandamme, P.; LiPuma, J.J. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microbiol. 2004, 42, 2074–2079, doi:10.1128/JCM.42.5.2074-2079.2004.
[25]
Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98.
[26]
Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal-W, Improving the sensitivity of progressive multiple sequence alignment trough sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680, doi:10.1093/nar/22.22.4673.
[27]
Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evolut. 2007, 24, 1596–1599, doi:10.1093/molbev/msm092.
[28]
Hebert, P.; Cywinska, A.; Ball, S.; deWaard, J. Biological identification through DNA barcodes. Proc. R. Soc. B: Biol. Sci. 2003, 270, 313–321, doi:10.1098/rspb.2002.2218.
[29]
Kumar, S.; Gadadkar, S. Efficiency of the neighbour-joining method in reconstructing deep and shallow evolutionary relationships in large phylogenies. J. Mol. Evolut. 2000, 51, 544–553.
[30]
Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evolut. 2008, 25, 1253–1256, doi:10.1093/molbev/msn083.
[31]
National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov/ (accessed on 26 August 2013).
[32]
Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987; p. 512.
[33]
Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. J. Evol. Bioinform. Online 2005, 1, 47–50.
[34]
Shiose, J.; Wakabayashi, H.; Tominaga, M.; Egusa, S. A report on a disease of cultured carp due to a capsulated Pseudomonas. Fish Pathol. 1974, 9, 79–83, doi:10.3147/jsfp.9.79.
[35]
Alderman, D.J.; Polglase, J.L. Pathogens, Parasites and Commensals. In Freshwater Crayfish—Biology, Management and Exploitation; Holdich, D.M., Lowry, R.S., Eds.; Timber Press: Portland, OR, USA, 1998; pp. 168–187.
[36]
Kusuda, R.; Toyoshima, R. Characteristics of a pathogenic Pseudomonas isolated from cultured yellowtail. Fish Pathol. 1976, 1, 133–139, doi:10.3147/jsfp.11.133.
[37]
Uryu, Y.; Malm, O.; Thornton, I.; Payne, I.; Cleary, D. Mercury contamination of fish and its implications for other wildlife of the Tapajós Basin, Brazilian Amazon. Conserv. Biol. 2001, 15, 438–446, doi:10.1046/j.1523-1739.2001.015002438.x.
[38]
Altinok, I.; Kayisa, S.; Capkin, E. Pseudomonas putida infection in rainbow trout. Aquaculture 2006, 261, 850–855, doi:10.1016/j.aquaculture.2006.09.009.
[39]
Yumoto, I; Kusano, T.; Shingyo, T.; Nodasaka, Y.; Matsuyama, H.; Okuyama, H. Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychropdomonas sp. strain E-3 to Pseudomonas psychrophila spp. nov., a new facultatively psychrophilic bacterium. Extremophiles 2001, 5, 343–349, doi:10.1007/s007920100199.
Hsueh, P.R.; Teng, L.J.; Pan, H.J.; Chen, Y.C.; Sun, C.C.; Ho, S.W.; Luh, K.T. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J. Clin. Microbiol. 1998, 36, 2914–2917.
[44]
Von Graevenitz, A.; Weinstein, J. Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J. Biol. Med. 1971, 44, 265–273.
[45]
Yoshino, Y.; Kitazawa, T.; Kamimura, M.; Tatsuno, K.; Ota, Y.; Yotsuyanagi, H. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J. Infect. Chemother. 2011, 17, 278–282, doi:10.1007/s10156-010-0114-0.
[46]
Timmis, K.N. Pseudomonas putida: A cosmopolitan opportunist par excellence. Environ. Microbiol. 2002, 4, 779–781, doi:10.1046/j.1462-2920.2002.00365.x.
[47]
Yamamoto, S.; Kasai, H.; Arnold, D.L.; Jackson, R.W.; Vivian, A.; Harayama, S. Phylogeny of the genus Pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000, 146, 2385–2394.
[48]
Franzetti, L.; Scarpellini, M. Characterisation of Pseudomonas spp. isolated from foods. Ann. Microbiol. 2007, 57, 39–47.
[49]
Mulet, M.; Lalucat, J.; García-Valdés, E. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 2010, 12, 1513–1530.
[50]
Picot, L.; Mezghani-Abdelmoula, S.; Merieaua, A.; Lerouxb, P.; Cazina, L.; Orangea, N.; Feuilloley, M.G.J. Pseudomonas fluorescens as a potential pathogen: Adherence to nerve cells. Microbes Infect. 2001, 3, 985–995, doi:10.1016/S1286-4579(01)01462-9.
[51]
Kim, S.E.; Park, S.H.; Park, H.B.; Park, K.H.; Kim, S.H.; Jung, S.I.; Shin, J.H.; Jang, H.C.; Kang, S.J. Nosocomial Pseudomonas putida bacteremia: High rates of carbapenem resistance and mortality. Chonnam Med. J. 2012, 48, 91–95, doi:10.4068/cmj.2012.48.2.91.
[52]
Gilardi, G.L. Infrequently encountered Pseudomonas species causing infection in humans. Ann. Int. Med. 1972, 77, 211–215, doi:10.7326/0003-4819-77-2-211.
[53]
Wilson, M.R.; Allard, M.W.; Brown, E.W. The forensic analysis of foodborne bacterial pathogens in the age of whole-genome sequencing. Cladistics 2013, 29, 449–461, doi:10.1111/cla.12012.
[54]
LeChevallier, M.W.; Seidler, R.J.; Evans, T.M. Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies. Appl. Environ. Microbiol. 1980, 40, 922–930.
[55]
Hihgsmith, A.K.; Abshire, R.L. Evaluation of most-probable-number technique for the enumeration of Pseudomonas aeruginosa. Appl. Microbiol. 1975, 30, 596–601.
[56]
Breeuwer, P.; Abee, T. Assessment of viability of microorganisms employing fluorescence techniques. Int. J. Food Microbiol. 2000, 55, 193–200, doi:10.1016/S0168-1605(00)00163-X.
[57]
Kogure, K.; Simidu, U.; Taga, N. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 1979, 25, 415–420, doi:10.1139/m79-063.