Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms
Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM 10 and PM 2.5) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.
References
[1]
Aust, A.E.; Balla, J.C.; Hu, A.A.; Lighty, J.S.; Smith, K.R.; Straccia, A.M.; Veranth, J.M.; Young, W.C. Particle characteristics responsible for effects on human lung epithelial cells. Res. Rep. Health Effects Inst. 2002, 5, 1–65.
[2]
Nagai, H.; Toyokuni, S. Biopersistent fiber-induced inflammation and carcinogenesis: Lessons learned from asbestos toward safety of fibrous nanomaterials. Arch. Biochem. Biophys. 2010, 502, 1–7, doi:10.1016/j.abb.2010.06.015.
[3]
Chuang, H.C.; Fan, C.W.; Chen, K.Y.; Chang-Chien, G.P.; Chan, C.C. Vasoactive alteration and inflammation induced by polycyclic aromatic hydrocarbons and trace metals of vehicle exhaust particles. Toxicol. Lett. 2012, 214, 131–136, doi:10.1016/j.toxlet.2012.08.012.
[4]
Strak, M.; Janssen, N.A.; Godri, K.J.; Gosens, I.; Mudway, I.S.; Cassee, F.R.; Lebret, E.; Kelly, F.J.; Harrison, R.M.; Brunekreef, B.; et al. Respiratory health effects of airborne particulate matter: The role of particle size, composition, and oxidative potential-the RAPTES project. Environ. Health Perspect. 2012, 120, 1183–1189, doi:10.1289/ehp.1104389.
[5]
Gardi, C.; Valacchi, G. Cigarette smoke and ozone effect on murine inflammatory responses. Ann. N.Y. Acad. Sci. 2012, 1259, 104–111, doi:10.1111/j.1749-6632.2012.06605.x.
[6]
Sangani, R.G.; Ghio, A.J. Lung injury after cigarette smoking is particle related. Int. J. Chron. Obstruct. Pulmon. Dis. 2011, 6, 191–198.
[7]
Pryor, W.A. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ. Health Perspect. 1997, 105, 875.
[8]
Hannan, M.A.; Recio, L.; Deluca, P.P.; Enoch, H. Co-mutagenic effects of 2-aminoanthracene and cigarette smoke condensate on smoker’s urine in the Ames Salmonella assay system. Cancer Lett. 1981, 13, 203–212.
[9]
M?ller, P.; Folkmann, J.K.; Forchhammer, L.; Br?uner, E.V.; Danielsen, P.H.; Risom, L.; Loft, S. Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett. 2008, 266, 84–97, doi:10.1016/j.canlet.2008.02.030.
[10]
Risom, L.; M?ller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005, 592, 119–137, doi:10.1016/j.mrfmmm.2005.06.012.
[11]
Squadrito, G.L.; Cueto, R.; Dellinger, B.; Pryor, W.A. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic. Biol. Med. 2001, 31, 1132–1138, doi:10.1016/S0891-5849(01)00703-1.
[12]
Ohyama, M.; Otake, T.; Adachi, S.; Kobayashi, T.; Morinaga, K. A comparison of the production of reactive oxygen species by suspended particulate matter and diesel exhaust particles with macrophages. Inhal. Toxicol. 2007, 19, 157–160, doi:10.1080/08958370701496103.
[13]
Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matterand human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362, doi:10.1080/10590500802494538.
[14]
Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG a marker of oxidative stress to DNA and a risk factor for cancer, atheroschlerosis and diabetics. Clin. Chim. Acta 2004, 339, 1–9, doi:10.1016/j.cccn.2003.09.010.
[15]
Pilger, A.; Rüdiger, H.W. 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 2006, 80, 1–15, doi:10.1007/s00420-006-0106-7.
[16]
Evans, M.D.; Dizdaroglou, M.; Cooke, M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res. 2004, 567, 1–61, doi:10.1016/j.mrrev.2003.11.001.
[17]
Sunil, V.R.; Kinal, J.; Vayas, K.J.; Massa, C.B.; Andrew, J.; Gow, A.J.; Jeffrey, D.; Laskin, J.D.; Laskin, D.L. Ozone-induced Injury and oxidative stress in bronchiolar epithelium is associated with altered pulmonary mechanics. Toxicol. Sci. 2013, 33, 309–319.
[18]
Sunil, V.R.; Patel-Vayas, K.; Shen, J.; Laskin, J.D.; Laskin, D.L. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress. Toxicol. Appl. Pharmacol. 2012, 263, 195–202, doi:10.1016/j.taap.2012.06.009.
[19]
Yu, M.; Zheng, X.; Witschi, H.; Pinkerton, K.E. The role of interleukin-6 in pulmonary inflammation and injury induced by exposure to environmental pollutants. Toxicol. Sci. 2002, 68, 488–497.
[20]
Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95.
[21]
Halliwel, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 1999.
[22]
Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1005–L1028.
[23]
Brookes, P.S.; Levonen, A.L.; Shiva, S.; Sarti, P.; Darley-Usmar, V.M. Mitochondria: Regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2002, 33, 755–764, doi:10.1016/S0891-5849(02)00901-2.
[24]
Nathan, C. Specificity of a third kind: Reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 2003, 111, 769–778.
Valko, M.; Izakovic, M.; Maur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 2004, 266, 37–56, doi:10.1023/B:MCBI.0000049134.69131.89.
[29]
Bartsch, H.; Nair, J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg. 2006, 391, 499–510, doi:10.1007/s00423-006-0073-1.
[30]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Tesler, J. Free radicals and antioxidants in normal physiological function and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84, doi:10.1016/j.biocel.2006.07.001.
[31]
Halliwell, B.; Gutteridge, J.M.C. The antioxidants of extracellular fluids. Arch Biochem. Biophys. 1990, 280, 1–8, doi:10.1016/0003-9861(90)90510-6.
[32]
Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell. 2012, 48, 158–167, doi:10.1016/j.molcel.2012.09.025.
[33]
Ottavio, F.G.; Handy, D.E.; Loscalzo, J. Redox regulation in the extracellular environment. Circ. J. 2008, 72, 1–16, doi:10.1253/circj.72.1.
[34]
Cerutti, P.A. Prooxidant states and tumor promotion. Science 1985, 227, 375–380.
[35]
Dreher, D.; Junod, A.F. Role of oxygen free radicals in cancer development. Eur. J. Cancer 1996, 32A, 30–38, doi:10.1016/0959-8049(95)00531-5.
[36]
Toyokuni, S. Molecular mechanisms of oxidative stress-induced carcinogenesis: From epidemiology to oxygenomics. Int. Union Biochem. Mol. Biol. (IUBMB) Life 2008, 60, 441–447, doi:10.1002/iub.61.
[37]
Hahn, W.C.; Weinberg, R.A. Modeling the molecular circuitry of cancer. Nat. Rev. Cancer 2002, 2, 331–341, doi:10.1038/nrc795.
[38]
Weinberg, R.A. The Biology of Cancer; Garland Science (Taylor & Francis Group): New York, NY, USA, 2006.
[39]
Ziech, D.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Reactive oxygen speciers (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. 2011, 711, 167–173, doi:10.1016/j.mrfmmm.2011.02.015.
[40]
Azad, N.; Rojanasakul, Y.; Vallyathan, V. Inflammation and lungcancer: Roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 1–15, doi:10.1080/10937400701436460.
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867, doi:10.1038/nature01322.
[43]
Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386, doi:10.1002/ijc.23192.
[44]
Kundu, J.K.; Surh, Y.J. Inflammation: Gearing the journey to cancer. Mutat. Res. 2008, 659, 15–30, doi:10.1016/j.mrrev.2008.03.002.
[45]
Lazennes, G.; Richmond, A. Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol. Med. 2010, 16, 133–144, doi:10.1016/j.molmed.2010.01.003.
[46]
Rodriguez-Vita, J.; Lawrence, T. The resolution of inflammation and cancer. Cytokine Growth Factor Rev. 2010, 21, 61–65, doi:10.1016/j.cytogfr.2009.11.006.
[47]
Truss, M.A.; Kensler, T.W. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic. Biol. Med. 1991, 10, 201–209, doi:10.1016/0891-5849(91)90077-G.
[48]
Porta, C.; Larghi, P.; Rimoldi, M.; Totaro, M.G.; Allavena, P.; Mantovani, A.; Sica, A. Cellular and molecular pathways linking inflammation to cancer. Immunobiology 2009, 214, 761–777, doi:10.1016/j.imbio.2009.06.014.
[49]
Jackson, J.R.; Seed, M.P.; Kircher, C.H.; Willoughby, D.A.; Winkler, J.D. The codependence of angiogenesis and chronic inflammation. FASEB J. 1997, 11, 457–465.
[50]
Costa, C.; Incio, J.; Soaes, R. Angiogenesis and chronic inflammation: Cause of consequence? Angiogenesis 2007, 10, 149–166, doi:10.1007/s10456-007-9074-0.
[51]
Dalgeish, A.G.; O’Byrne, K. Inflammation and cancer: The role of the immune response and angiogenesis. Cancer Treat. Res. 2006, 130, 1–38, doi:10.1007/0-387-26283-0_1.
[52]
Allavena, P.; Sica, A.; Sollinas, G.; Porta, G.; Mantovani, A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 2008, 66, 1–9, doi:10.1016/j.critrevonc.2007.07.004.
[53]
Benelli, R.; Lorusco, G.; Albini, A.; Nooman, D.M. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr. Pharm. Des. 2006, 12, 3101–3115, doi:10.2174/138161206777947461.
[54]
Donaldson, K.; Stone, V.; Borm, P.J.; Jimenez, L.A.; Gilmour, P.S.; Schins, R.P.; Knaapen, A.M.; Rahman, I.; Faux, S.P.; Brown, D.M.; et al. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 2003, 34, 1369–1382, doi:10.1016/S0891-5849(03)00150-3.
[55]
Lim, H.B.; Ichinose, T.; Miyabara, Y.; Takano, H.; Kumagai, Y.; Shimojyo, N.; Devalia, J.L.; Sagai, M. Involvement of superoxide and nitric oxide on airway inflammation and hyperresponsiveness induced by diesel exhaust particles in mice. Free Radic. Biol. Med. 1998, 25, 635–644, doi:10.1016/S0891-5849(98)00073-2.
[56]
Vendramini-Costa, D.B.; Carvalho, J.E. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des. 2012, 18, 3831–3852, doi:10.2174/138161212802083707.
[57]
Gurgueira, S.A.; Lawrence, J.; Coull, B.; Murthy, G.G.; Gonzalez-Flecha, B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 2002, 110, 749–755.
[58]
Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol. Med. 2008, 44, 1689–1699, doi:10.1016/j.freeradbiomed.2008.01.028.
[59]
Xiao, G.G.; Wang, M.; Li, N.; Loo, J.A.; Nel, A.E. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J. Biol. Chem. 2003, 278, 50781–50790.
[60]
Sies, H. Oxidative Stress: Introductory Remarks. In Oxidative Stress; Sies, H., Ed.; Academic Press: London, UK, 1985; pp. 1–8.
[61]
Foyer, C.H. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2006, 17, 1866–1875.
[62]
Ghio, A.J.; Carraway, M.S.; Madden, M.C. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J. Toxicol. Environ. Health B Crit. Rev. 2012, 15, 1–21, doi:10.1080/10937404.2012.632359.
[63]
Rhoden, C.R.; Wellenius, G.A.; Ghelfi, E; Lawrence, J.; Gonzalez-Flecha, B. PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochim. Biophys. Acta 2005, 1725, 305–313.
[64]
Terzano, C.; Di Stefano, F.; Conti, V.; Graziani, E.; Petroianni, A. Air pollution ultrafine particles: Toxicity beyond the lung. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 809–821.
[65]
Knaapen, A.M.; Shi, T.; Borm, P.J.; Schins, R.P. Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol. Cell Biochem. 2002, 234–235, 317–326, doi:10.1023/A:1015970023889.
[66]
Shi, T.; Knaapen, A.M.; Begerow, J.; Birmili, W.; Borm, P.J.; Schin, R.P. Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occup. Environ. Med. 2003, 60, 315–321, doi:10.1136/oem.60.5.315.
[67]
Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. The Role of Stable Free Radicals, Metals and PAHs of Airborne Particulate Matter in Mechanisms o Oxidative Stress and Carcinogenesis. In Urban Airborne Particulate Matter; Zereini, F., Wiseman, C.L.S., Eds.; Springer-Verlag: Berlin, Heidelberg, Germany, 2010; pp. 411–429.
[68]
Shi, T.; Duffin, R.; Borm, P.J.; Li, H.; Weishaupt, C.; Schins, R.P. Hydroxyl-radical-dependent DNA damage by ambient particulate matter from contrasting sampling locations. Environ. Res. 2006, 1, 18–24.
[69]
Donaldson, K.; Brown, D.M.; Mitchell, C.; Dineva, M.; Beswick, P.H.; Gilmour, P.; MacNee, W. Free radical activity of PM10: Iron-mediated generation of hydroxyl radicals. Environ. Health Perspect. 1997, 105, 1285–1289.
[70]
Dellinger, B.; Pryor, W.A.; Cueto, R.; Squadrito, G.L.; Hedge, V.; Deutsch, W.A. Role of free radicals in the toxicity of airborne particulate matter. Chem. Res. Toxicol. 2001, 14, 1371–1377, doi:10.1021/tx010050x.
[71]
Penning, T.M.; Burczynski, M.E.; Hung, C.F.; McCoull, K.D.; Palackal, N.T.; Tsuruda, L.S. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chem. Res. Toxicol. 1999, 12, 1–18, doi:10.1021/tx980143n.
[72]
Park, J.H.; Troxel, A.B.; Harvey, R.G.; Penning, T.M. Polycyclic aromatic hydrocarbon (PAH) o-quinonesproduced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem. Res. Toxicol. 2006, 19, 719–728, doi:10.1021/tx0600245.
[73]
Valavanidis, A.; Fiotakis, K.; Bakeas, E.; Vlahogianni, T. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005, 10, 37–51, doi:10.1179/135100005X21606.
[74]
Rubin, H. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: A bio-historical perspective with updates. Carcinogenesis 2001, 22, 1903–1930, doi:10.1093/carcin/22.12.1903.
[75]
Yoshie, Y.; Ohshima, H. Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide. Carcinogenesis 1997, 18, 1359–1363, doi:10.1093/carcin/18.7.1359.
[76]
Zhou, Y.M.; Zhong, C.Y.; Kennedy, I.M.; Leppert, V.J.; Pinkerton, K.E. Oxidative stress and NFkappaB activation in the lungs of rats: A synergistic interaction between soot and iron particles. Toxicol. Appl. Pharmacol. 2003, 190, 157–169, doi:10.1016/S0041-008X(03)00157-1.
[77]
Stone, V.; Wilson, M.R.; Lightbody, J.; Donaldson, K. Investigating the potential for interaction between the components of PM(10). Environ. Health Prev. Med. 2003, 7, 246–253.
[78]
Valavanidis, A.; Loridas, S.; Vlahogianni, T.; Fiotakis, K. Influence of ozone on traffic-related particulate matter on the generation of hydroxyl radicals through a heterogeneous synergistic effect. J. Hazard Mater. 2009, 162, 886–892, doi:10.1016/j.jhazmat.2008.05.124.
[79]
Bouthillier, L.; Vincent, R.; Goegan, P.; Adamson, I.Y.; Bjarnason, S.; Stewart, M.; Guénette, J.; Potvin, M.; Kumarathasan, P. Acute effects of inhaled urban particles and ozone: Lung morphology, macrophage activity, and plasma endothelin-1. Am. J. Pathol. 1998, 153, 1873–1884, doi:10.1016/S0002-9440(10)65701-X.
[80]
Valavanidis, A.; Vlachogianni, T.; Fiotakis, K. Tobacco smoke: Involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int. J. Environ. Res. Public Health 2009, 6, 445–462, doi:10.3390/ijerph6020445.
[81]
Morimoto, Y.; Kido, M.; Tanaka, I.; Fujino, A.; Higashi, T.; Yokosaki, Y. Synergistic effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor by alveolar macrophages of rats. Br. J. Ind. Med. 1993, 50, 955–960.
[82]
Danielsent, P.H.; Mollert, P.; Jensen, K.A.; Sharma, A.K.; Wallin, H.; Bossi, R.; Autrup, H.; M?lhave, L.; Ravanat, J.L.; Briedé, J.J.; et al. Oxidative stress, DNA damage, and inflammation by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem. Res. Toxicol. 2011, 24, 168–184, doi:10.1021/tx100407m.
[83]
DosReis, G.A.; Borges, V.M. Role of Fas-ligand induced apoptosis in pulmonary inflammation and injury. Curr. Drug Targets Inflamm. Allergy 2003, 2, 161–167.
[84]
Xia, T.; Kovochich, M.; Nel, A.E. Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung diseases. Front Biosci. 2007, 12, 1238–1246, doi:10.2741/2142.
[85]
Martin, L.D.; Krunkosky, T.M.; Dye, J.A.; Fischer, B.M.; Jiang, N.F.; Rochelle, L.G.; Akley, N.J.; Dreher, K.L.; Adler, K.B. The role of reactive oxygen and nitrogen species in the response of airway epithelium to particulates. Environ. Health Perspect. 1997, 105, 1301–1307.
[86]
Rosanna, D.P.; Salvatore, C. Reactive oxygen species, inflammation, and lung diseas. Curr. Pharm. Des. 2012, 18, 3889–3900, doi:10.2174/138161212802083716.
[87]
Knaapen, A.M.; Gungor, N.; Schins, R.P.; Borm, P.J.; van Schooten, F.J. Neutrophils and respiratory tract DNA damage and mutagenesis: A review. Mutagenesis 2006, 21, 225–236, doi:10.1093/mutage/gel032.
[88]
Taniyama, Y.; Griendling, K.K. Reactive oxygen species in the vasculature: Molecular and cellular mechanisms. Hypertension 2003, 42, 1075–1081, doi:10.1161/01.HYP.0000100443.09293.4F.
Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C-Envir. 2009, 27, 1–20, doi:10.1080/10590500802708267.
[91]
Van Berlo, D.; Hullmann, M.; Schins, R.P.F. Toxicology of Ambient Particulate Matter. In Experientia Supplementum Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer Basel AG: Heidelberg, Germany, 2012; Volume 3, pp. 165–218.
[92]
Jena, N.R. DNA damage by reactive species: Mechanisms, mutation and repair. J. Biosci. 2012, 37, 503–517, doi:10.1007/s12038-012-9218-2.
[93]
Beckman, K.B.; Ames, B.N. Oxidative decay of DNA. J. Biol. Chem. 1997, 272, 217–225.
[94]
Dizdaroglu, M. Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Lett. 2012, 327, 26–47, doi:10.1016/j.canlet.2012.01.016.
[95]
Dizdaroglu, M.; Jaruga, P. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 2012, 46, 382–419, doi:10.3109/10715762.2011.653969.
[96]
Park, C.B.; Larsson, N.G. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 2011, 193, 809–818, doi:10.1083/jcb.201010024.
Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 239–267, doi:10.1146/annurev.pharmtox.44.101802.121851.
[99]
Berneburg, M.; Kamenisch, Y.; Krutmann, J. Repair of mitochondrial DNA in aging and carcinogenesis. Photochem. Photobiol. Sci. 2006, 5, 190–198, doi:10.1039/b507380d.
[100]
Ralph, S.J.; Rodríguez-Enríquez, S.; Neuzil, J.; Saavedra, E.; Moreno-Sánchez, R. The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation—Why mitochondria are targets for cancer therapy. Mol. Aspects Med. 2010, 31, 145–170, doi:10.1016/j.mam.2010.02.008.
[101]
M?ller, P.; Jacobsen, N.R.; Folkmann, J.K.; Danielsen, P.H.; Mikkelsen, L.; Hemmingsen, J.G.; Vesterdal, L.K.; Forchhammer, L.; Wallin, H.; Loft, S. Role of oxidative damage in toxicity of particulates. Free Radic. Res. 2010, 44, 1–46, doi:10.3109/10715760903300691.
[102]
Mates, J.M.; Segura, J.A.; Alonso, F.J.; Marquez, J. Intercellular redox status and oxidative stress: Implications for cell proliferation, apoptosis, and carcinogenesis. Arch. Toxicol. 2008, 82, 273–299, doi:10.1007/s00204-008-0304-z.
[103]
Paz-Elizur, T.; Sevilya, Z.; Leitner-Dagan, Y.; Elinger, D.; Roisman, L.C.; Livneh, Z. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention. Cancer Lett. 2008, 266, 60–72, doi:10.1016/j.canlet.2008.02.032.
[104]
Soriani, M.; Luscher, P.; Tyrrell, R.M. Direct and indirect modulation of ornithine decarboxylase and cyclooxygenase by UVB radiation in human skin cells. Carcinogenesis 1999, 20, 727–732, doi:10.1093/carcin/20.4.727.
[105]
Zhao, Y.; Xue, Y.; Oberley, T.D.; Kiningham, K.K.; Lin, S.M.; Yen, H.C.; Majima, H.; Hines, J.; St Clair, D. Overexpression of manganese superoxide dismutase supresses tumor formation by modulation of activator protein-1 signaling in the multistage skin carcinogenesis model. Cancer Res. 2001, 61, 6082–6088.
[106]
Briede, J.J.; van Delft, J.M.; de Kok, T.M.; van Herwijnen, M.H.; Maas, L.M.; Gottschalk, R.W.; Kleinjans, J.C. Global gene expression analysis reveals differences in cellular response to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol. Sci. 2010, 114, 193–203.
[107]
Shi, H.; Shi, X.; Liu, K.J. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell Biochem. 2004, 255, 62–78.
[108]
Salnikow, K.; Zhitkovich, A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem. Res. Toxicol. 2008, 21, 28–44, doi:10.1021/tx700198a.
[109]
Liu, K.J.; Qu, W.; Kadiiska, M.B. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 209–214, doi:10.1016/j.taap.2009.01.029.
[110]
Toyokuni, S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci. 2008, 100, 9–16, doi:10.1111/j.1349-7006.2008.01001.x.
[111]
Dizdaroglu, M. Mechanisms of Free Radical Damage to DNA. In DNA and Free Radicals: Techniques, Mechanisms and Applications; Aruoma, O.I., Halliwell, B., Eds.; OICA International: Caribbean, St Lucia City, 1998; pp. 3–26.
[112]
Kawanishi, S.; Hiraku, Y.; Oikawa, S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat. Res. Rev. Mutat. Res. 2001, 488, 65–76, doi:10.1016/S1383-5742(00)00059-4.
[113]
Delaney, S.; Jarem, D.A.; Volle, C.B.; Yennie, C.J. Chemical and biological consequences of oxidatively damaged guanine in DNA. Free Radic. Res. 2012, 46, 420–441, doi:10.3109/10715762.2011.653968.
[114]
Jackson, J.H. Potential molecular mechanisms of oxidant-induced carcinogenesis. Environ. Health Perspect. 1994, 102, 155–158.
[115]
Malins, D.; Polissar, N.L.; Gunselman, S.J. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proc. Natl. Acad. Sci. USA 1996, 93, 2557–2563, doi:10.1073/pnas.93.6.2557.
[116]
Willett, W.C.; Stampeer, M.J.; Colditz, E.A.; Rosner, C.H.; Hennekens, C.H.; Speizer, F.E. Dietary fat and the risk of breast cancer. New Engl. J. Med. 1987, 316, 22–28, doi:10.1056/NEJM198701013160105.
[117]
Willett, W.C. The search for the causes of breast and colon cancer. Nature 1989, 338, 389–394, doi:10.1038/338389a0.
[118]
Willett, W.C. Diet and cancer. Oncologist 2000, 5, 393–404, doi:10.1634/theoncologist.5-5-393.
[119]
Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013, 13, 227–232, doi:10.1038/nrc3483.
[120]
Ishii, H.; Fukumor, N.; Horie, S.; Suga, T. Effects of fat content in the diet on hepatic peroxisomes of the rat. Biochim. Biophys. Acta 1980, 617, 1–11.
[121]
Esterbauer, H.; Ecki, P.; Ortner, A. Possible mutagens derived from lipid precursors. Mutat. Res. 1990, 238, 223–233, doi:10.1016/0165-1110(90)90014-3.
[122]
Clayson, D.B.; Mehta, R.; Iverson, F. Oxidative DNA damage-the effect of certain genotoxic and operationally non-genotoxic carcinogens. Mutat. Res. 1994, 317, 25–42, doi:10.1016/0165-1110(94)90010-8.
[123]
Wang, M.Y.; Liehr, J.G. Lipid hydroperoxide-induced endogenous DNA adducts in hamsters: Possible mechanim of lipid hydroperoxide-mediated carcinogenesis. Arch. Biochem. Biophys. 1995, 316, 38–46, doi:10.1006/abbi.1995.1007.
[124]
Bartsch, H.; Nair, J.; Owen, R.W. Exocyclic DNA adducts as oxidative stress markers in colon carcinogenesis: Potential role of lipid peroxidation, dietary fat and antioxidants. Biol. Chem. 2002, 383, 915–921.
Shamberger, R.J.; Andreone, T.L.; Willis, C.E. Antioxidants and cancer: IV. Initiating activity of malondialdehyde as a carcinogen. J. Natl. Cancer Inst. 1974, 53, 1771–1773.
[127]
Basu, A.K.; Marnett, L.J. Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis 1983, 4, 331–333, doi:10.1093/carcin/4.3.331.
Nair, V.; Turner, G.A.; Offerman, R.J. Novel adducts from modification of nuclei acid bases by malondialdehyde. J. Am. Chem. Soc. 1984, 106, 3370–3371, doi:10.1021/ja00323a061.
[130]
Fink, S.P.; Reddy, G.R.; Marnett, L.J. Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc. Natl. Acad. Sci. USA 1997, 94, 8652–8657, doi:10.1073/pnas.94.16.8652.
[131]
Nair, U.; Bartsch, H.; Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammation diseases: A review of published adduct types and levels in humans. Free Radic. Biol. Med. 2007, 43, 1109–1120, doi:10.1016/j.freeradbiomed.2007.07.012.
[132]
Blackburn, E.H. Structure and function of telomeres. Nature 1991, 350, 569–573, doi:10.1038/350569a0.
[133]
Blackburn, E.H. Telomere states and cell fates. Nature 2000, 408, 53–56, doi:10.1038/35040500.
[134]
Blackburn, E.H. Switching and signaling at the telomere. Cell 2001, 106, 661–673, doi:10.1016/S0092-8674(01)00492-5.
[135]
Oikawa, S.; Kawanishi, S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999, 453, 365–368, doi:10.1016/S0014-5793(99)00748-6.
Von Zglinicki, T.; Martin-Ruiz, C.M.; Saretzki, G. Telomeres, cell senescence and human ageing. Signal Transduct. 2005, 3, 103–114, doi:10.1002/sita.200400049.
[138]
Von Zglinicki, T.; Martin-Ruiz, C.M. Telomeres as biomarkers for ageing and age-related diseases. Curr. Mol. Med. 2005, 5, 197–203, doi:10.2174/1566524053586545.
[139]
Smogorzewska, A.; de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 2002, 21, 4338–4348, doi:10.1093/emboj/cdf433.
[140]
De Lange, T. Telomere-related genome instability in cancer. Cold Spring Harb. Symp. Quant. Biol. 2005, 70, 197–204, doi:10.1101/sqb.2005.70.032.
[141]
Prescott, J.; Wentzensen, I.M.; Savage, S.A.; de Vivo, I. Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat. Res. 2012, 730, 75–84, doi:10.1016/j.mrfmmm.2011.06.009.
[142]
Cheng, A.L.; Deng, W. Telomere dysfunction, genome instability and cancer. Front. Biosci. 2008, 13, 2075–2090, doi:10.2741/2825.
[143]
Blasco, M.A.; Hahn, W.C. Evolving views of telomerase and cancer. Trends Cell Biol. 2003, 13, 289–294, doi:10.1016/S0962-8924(03)00085-0.
[144]
Hou, L.; Wang, S.; Dou, C.; Zhang, X.; Yu, Y.; Zheng, Y.; Avula, U.; Hoxha, M.; Díaz, A.; McCracken, J.; et al. Air pollution exposure and telomere length in highly exposed subjects in Beijing, China: A repeated-measure study. Environ. Int. 2012, 48, 71–77, doi:10.1016/j.envint.2012.06.020.
Grahame, T.J.; Schlesinger, R.B. Telomere susceptibility to cigarette smoke-induced oxidative damage and chromosomal instability of mouse embryos in vitro. Free Radic. Biol. Med. 2010, 48, 1663–1676, doi:10.1016/j.freeradbiomed.2010.03.026.
[147]
Berin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559, doi:10.1016/j.biochi.2006.10.001.
[148]
Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 2010, 38, 96–109.
[149]
Holloway, J.W.; Savarimuthu, F.S.; Fong, K.M.; Yang, I.A. Genomics and the respiratory effects of air pollution exposure. Respirology 2012, 17, 590–600, doi:10.1111/j.1440-1843.2012.02164.x.
[150]
Anisimov, V.N. The relationship between aging and carcinogenesis: A critical appraisal. Crit. Rev. Oncol. Hematol. 2003, 45, 277–304, doi:10.1016/S1040-8428(02)00121-X.
[151]
Martien, S.; Abbadie, C. Acquisition of oxidative DNA damage during senescence: The first step toward carcinogenesis. Ann. N. Y. Acad. Sci. 2007, 1119, 51–63, doi:10.1196/annals.1404.010.
Darnell, J.E. Transcription factors targets for cancer therapy. Nat. Rev. Cancer 2002, 2, 740–749, doi:10.1038/nrc906.
[154]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the keap1-Nrf2-ARE pathway. Ann. Rev. Pharmacol. Toxicol. 2007, 47, 89–116, doi:10.1146/annurev.pharmtox.46.120604.141046.
Hsu, T.C.; Young, M.R.; Cmarik, J.; Colburn, N.H. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 2000, 28, 1338–1348, doi:10.1016/S0891-5849(00)00220-3.
[158]
Dhar, A.; Young, M.R.; Colburn, N.H. The role of AP-1, NF-kappaB and ROS/NOS in sking carcinogenesis: The JB6 model is predictive. Mol. Cell Biochem. 2002, 234–235, 185–193, doi:10.1023/A:1015948505117.
[159]
Sethi, G.; Sung, B.; Aggrawal, B.B. Nuclear factor-kappaB activation: From bench to bedside. Exp. Biol. Med. 2008, 238, 21–31.
[160]
Lee, C.H.; Jeon, Y.T.; Kim, S.H.; Song, Y.S. NF-kappaB as a potential molecular target for cancer therapy. Biofactors 2007, 29, 19–35, doi:10.1002/biof.5520290103.
[161]
Wang, H.; Chu, C.H. Effect of NF-kappaB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr. Cancer Drug. Targets 2010, 10, 593–599, doi:10.2174/156800910791859425.
[162]
Mabjeesh, N.J.; Amir, S. Hypoxia-inducible factor (HIF) in human carcinogenesis. Histol Histopathol. 2007, 22, 559–572.
[163]
Kimbro, K.S.; Simons, J.W. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr. Relat. Cancer 2006, 13, 739–749, doi:10.1677/erc.1.00728.
[164]
Philip, B.; Ito, K.; Moreno-Sanchez, R.; Ralph, S.J. HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 2013, 34, 1699–1707, doi:10.1093/carcin/bgt209.
[165]
Inoue, K.; Kurabayashi, A.; Shuin, T.; Ohtsuki, Y.; Furihata, M. Overexpression of p53 protein in human tumors. Med. Mol. Morphol. 2012, 45, 115–123, doi:10.1007/s00795-012-0575-6.
[166]
Maillet, A.; Perraiz, S. Redox regulation of p53, redox effectors regulated by p53: A subtle balance. Antiox. Redox Signal. 2012, 16, 1285–1294, doi:10.1089/ars.2011.4434.
[167]
Lanni, C.; Racchi, M.; Memo, M.; Gavoni, S.; Uberti, D. p53 at the crossroads between cancer and neurodegeneration. Free Radic. Biol. Med. 2012, 52, 1727–1733, doi:10.1016/j.freeradbiomed.2012.02.034.
[168]
Suzuki, S.; Tanaka, T.; Poyurovsku, M.V.; Nagano, H.; Mayama, T.; Ohkubo, S. Phosphate-activated glutaminase (GLS2), ap53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA 2010, 107, 7461–7466.