全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neurotoxicity of Acrylamide in Exposed Workers

DOI: 10.3390/ijerph10093843

Keywords: acrylamide, workers, neurotoxicity, neuropathy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acrylamide (ACR) is a water-soluble chemical used in different industrial and laboratory processes. ACR monomer is neurotoxic in humans and laboratory animals. Subchronic exposure to this chemical causes neuropathies, hands and feet numbness, gait abnormalities, muscle weakness, ataxia, skin and in some cases, cerebellar alterations. ACR neurotoxicity involves mostly the peripheral but also the central nervous system, because of damage to the nerve terminal through membrane fusion mechanisms and tubulovescicular alterations. Nevertheless, the exact action mechanism is not completely elucidated. In this paper we have reviewed the current literature on its neurotoxicity connected to work-related ACR exposure. We have analyzed not only the different pathogenetic hypotheses focusing on possible neuropathological targets, but also the critical behavior of ACR poisoning. In addition we have evaluated the ACR-exposed workers case studies. Despite all the amount of work which have being carried out on this topic more studies are necessary to fully understand the pathogenetic mechanisms, in order to propose suitable therapies.

References

[1]  Brown, L.; Rhead, M.M.; Bancroft, K.C.C.; Allen, N. Case studies of acrylamide pollution resulting from industrial use of acrylamides. Water Pollut. Control 1980, 79, 507–510.
[2]  Kopp, E.K.; Dekant, W. Toxicokinetics of acrylamide in rats and humans following single oral administration of low doses. Toxicol. Appl. Pharmacol. 2009, 235, 135–142, doi:10.1016/j.taap.2008.12.001.
[3]  Auld, R.B.; Bedwell, S.F. Peripheral neuropathy with sympathetic overactivity from industrial contact with acrylamide. Can. Med. Assoc. J. 1967, 96, 652–654.
[4]  Zhang, Y.; Zhang, G.; Zhang, Y. Occurrence and analytical methods of acrylamide in heat-treated foods: Review and recent developments. J. Chromatogr. A 2005, 1075, 1–21.
[5]  Eriksson, S. Acrylamide in Food Products: Identification, Formation and Analytical Methodology. Ph.D. Thesis, Department of Environmental Chemistry, Stockholm University, Stockholm, Sweden, 2005.
[6]  T?rqvist, M. Acrylamide in Food: The Discovery and Its Implications. In Chemistry and Safety of Acrylamide in Food; Friedman, M., Mottram, D., Eds.; Springer Science, Business Media Inc.: New York, NY, USA, 2005; pp. 1–19.
[7]  Johnson, K.A.; Gorzinski, S.J.; Bodner, K.M.; Campbell, R.A.; Wolf, C.H.; Friedman, M.A. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol. Appl. Pharmacol. 1986, 85, 154–168, doi:10.1016/0041-008X(86)90109-2.
[8]  Smith, E.A.; Oehme, F.W. Acrylamide and polyacrylamide: A review of production, use, environmental fate and neurotoxicity. Rev. Environ. Health 1991, 9, 215–228.
[9]  Edwards, P.M.; Parker, V.H. A simple, sensitive, and objective method for early assessment of acrylamide neuropathy in rats. Toxicol. Appl. Pharmacol. 1977, 40, 589–591, doi:10.1016/0041-008X(77)90083-7.
[10]  Some Industrial Chemicals. In IRAC Monographs on the Evaluation of Carcinogenic Risk for Chemicals to Humans; International Agency for Research on Cancer (IARC): Lyon, France, 1994; Volume 60, p. 435.
[11]  Shipp, A.; Lawrence, G.; Gentry, R.; McDonald, T.; Bartow, H.; Bounds, J.; Macdonald, N.; Clewell, H.; Allen, B.; van Landingham, C. Acrylamide: Review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit. Rev. Toxicol. 2006, 36, 481–608, doi:10.1080/10408440600851377.
[12]  Collins, J.J.; Swaen, G.M.; Marsh, G.M.; Utidjian, H.M.; Caporossi, J.C.; Lucas, L.J. Mortality patterns among workers exposed to acrylamide. J. Occup. Med. 1989, 31, 614–617, doi:10.1097/00043764-198907000-00013.
[13]  Marsh, G.M.; Lucas, L.J.; Youk, A.O.; Schall, L.C. Mortality patterns among workers exposed to acrylamide: 1994 follow up. Occup. Environ. Med. 1999, 56, 181–190, doi:10.1136/oem.56.3.181.
[14]  LoPachin, R.M., Jr.; Lehning, E.J. Acrylamide-induced distal axon degeneration: A proposed mechanism of action. Neurotoxicology 1994, 15, 247–259.
[15]  LoPachin, R.M.; Lehning, E.J.; Opanashuk, L.A.; Jortner, B.S. Rate of neurotoxicant exposure determines morphologic manifestations of distal axonopathy. Toxicol. Appl. Pharmacol. 2000, 167, 75–86, doi:10.1006/taap.2000.8984.
[16]  LoPachin, R.M.; Ross, J.F.; Lehning, E.J. Nerve terminals as the primary site of acrylamide action: A hypothesis. Neurotoxicology 2002, 23, 43–59, doi:10.1016/S0161-813X(01)00074-2.
[17]  Fennell, T.R.; Sumner, S.C.; Snyder, R.W.; Burgess, J.; Friedman, M.A. Kinetics of elimination of urinary metabolites of acrylamide in humans. Toxicol. Sci. 2006, 93, 256–267, doi:10.1093/toxsci/kfl069.
[18]  LoPachin, R.M. The changing view of acrylamide neurotoxicity. Neurotoxicology 2004, 25, 617–630, doi:10.1016/j.neuro.2004.01.004.
[19]  Lehning, E.J.; Balaban, C.D.; Ross, J.F.; Reid, M.A.; LoPachin, R.M. Acrylamide neuropathy. I. Spatiotemporal characteristics of nerve cell damage in rat cerebellum. Neurotoxicology 2002, 23, 397–414, doi:10.1016/S0161-813X(02)00083-9.
[20]  Spencer, P.S.; Schaumburg, H.H. A review of acrylamide neurotoxicity. Part II. Experimental animal neurotoxicity and pathologic mechanisms. Can. J. Neurol. Sci. 1974, 1, 152–169.
[21]  Schaumburg, H.H.; Wi?niewski, H.M.; Spencer, P.S. Ultrastructural studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. J. Neuropathol. Exp. Neurol. 1974, 33, 260–284, doi:10.1097/00005072-197404000-00006.
[22]  Cavanagh, J.B. The “dying back” process. A common denominator in many naturally occurring and toxic neuropathies. Arch. Pathol. Lab. Med. 1979, 103, 659–664.
[23]  Cavanagh, J.B. The significance of the “dying back” process in experimental and human neurological disease. Int. Rev. Exp. Pathol. 1964, 3, 219–267.
[24]  Jones, H.B.; Cavanagh, J.B. The evolution of intracellular responses to acrylamide in rat spinal ganglion neurons. Neuropathol. Appl. Neurobiol. 1984, 10, 101–121, doi:10.1111/j.1365-2990.1984.tb00343.x.
[25]  Sterman, A.B.; Sheppard, R.C. A correlative neurobehavioral-morphological model of acrylamide neuropathy. Neurobehav. Toxicol. Teratol. 1983, 5, 151–159.
[26]  Sterman, A.B. The role of the neuronal cell body in neurotoxic injury. Neurobehav. Toxicol. Teratol. 1982, 4, 493–494.
[27]  Sterman, A.B. Acrylamide induces early morphologic reorganization of the neuronal cell body. Neurology 1982, 32, 1023–1026, doi:10.1212/WNL.32.9.1023.
[28]  Sterman, A.B.; Sposito, N. Motoneuron axosomatic synapses are altered in axonopathy. J. Neuropathol. Exp. Neurol. 1984, 43, 201–209, doi:10.1097/00005072-198403000-00009.
[29]  Sterman, A.B. Acrylamide-induced remodelling of perikarya in rat superior cervical ganglia. Neuropathol. Appl. Neurobiol. 1984, 10, 221–234, doi:10.1111/j.1365-2990.1984.tb00353.x.
[30]  Sterman, A.B. The pathology of toxic axonal neuropathy: A clinical-experimental link. Neurobehav. Toxicol. Teratol. 1984, 6, 463–466.
[31]  Sterman, A.B.; Panasci, D.J.; Persons, W. Does pyruvate prevent acrylamide neurotoxicity? Implications for disease pathogenesis. Exp. Neurol. 1983, 82, 148–158, doi:10.1016/0014-4886(83)90250-9.
[32]  Tandrup, T.; Braendgaard, H. Number and volume of rat dorsal root ganglion cells in acrylamide intoxication. J. Neurocytol. 1994, 23, 242–248, doi:10.1007/BF01275528.
[33]  DeGrandchamp, R.L.; Lowndes, H.E. Early degeneration and sprouting at the rat neuromuscular junction following acrylamide administration. Neuropathol. Appl. Neurobiol. 1990, 16, 239–254, doi:10.1111/j.1365-2990.1990.tb01160.x.
[34]  DeGrandchamp, R.L.; Reuhl, K.R.; Lowndes, H.E. Synaptic terminal degeneration and remodeling at the rat neuromuscular junction resulting from a single exposure to acrylamide. Toxicol. Appl. Pharmacol. 1990, 105, 422–433, doi:10.1016/0041-008X(90)90146-L.
[35]  Suzuki, K.; Pfaff, L.D. Acrylamide neuropathy in rats. An electron microscopic study of degeneration and regeneration. Acta Neuropathol. 1973, 24, 197–213, doi:10.1007/BF00687590.
[36]  Madrid, R.G.; Ohnishi, A.; Hachisuka, K.; Murai, Y. Axonal sprouting of motor nerve in acrylamide-intoxicated rats with progressive weakness. Environ. Res. 1993, 60, 233–241, doi:10.1006/enrs.1993.1031.
[37]  Schaumburg, H.H.; Spencer, P.S. The neurology and neuropathology of the occupational neuropathies. J. Occup. Med. 1976, 18, 739–742, doi:10.1097/00043764-197611000-00010.
[38]  Rampello, L.; Vecchio, I.; Malaguarnera, M.; Rampello, L. Axonal and demyelinating motor neuropathies. Differential diagnosis. Acta Med. Mediterr. 2012, 28, 139–140.
[39]  Sickles, D.W.; Stone, J.D.; Friedman, M.A. Fast axonal transport: A site of acrylamide neurotoxicity? Neurotoxicology 2002, 23, 223–251, doi:10.1016/S0161-813X(02)00025-6.
[40]  LoPachin, R.M.; Barber, D.S.; He, D.; Das, S. Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles. Toxicol. Sci. 2006, 89, 224–234, doi:10.1093/toxsci/kfj005.
[41]  Salomone, S.; Waeber, C. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: Caveats and critical thinking in characterizing receptor-mediated effects. Front. Pharmacol. 2011, 2, 9, doi:10.3389/fphar.2011.00009.
[42]  Yu, S.; Zhao, X.; Zhang, T.; Yu, L.; Li, S.; Cui, N.; Han, X.; Zhu, Z.; Xie, K. Acrylamide-induced changes in the neurofilament protein of rat cerebrum fractions. Neurochem. Res. 2005, 30, 1079–1085, doi:10.1007/s11064-005-7413-3.
[43]  Zhang, L.; Gavin, T.; Barber, D.; LoPachin, R.M. Role of the Nrf2-ARE pathway in acrylamide neurotoxicity. Toxicol. Lett. 2011, 205, 1–7, doi:10.1016/j.toxlet.2011.04.011.
[44]  Zhu, Y.J.; Zeng, T.; Zhu, Y.B.; Yu, S.F.; Wang, Q.S.; Zhang, L.P.; Guo, X.; Xie, K.Q. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem. Res. 2008, 33, 2310–2317, doi:10.1007/s11064-008-9730-9.
[45]  Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 4th ed. ed.; Clarendon Press: Oxford, UK, 2006.
[46]  Maiese, K. Metabolic clues: Novel directives for broad treatment strategies. Oxid. Med. Cell. Longev. 2010, 3, 289, doi:10.4161/oxim.3.5.14254.
[47]  Chen, J.C.; Schwartz, J. Neurobehavioral effects of ambient air pollution on cognitive performance in U.S. adults. Neurotoxicology 2009, 30, 231–239, doi:10.1016/j.neuro.2008.12.011.
[48]  Mulloy, K.B. Two case reports of neurological disease in coal mine preparation plant workers. Am. J. Ind. Med. 1996, 30, 56–61, doi:10.1002/(SICI)1097-0274(199607)30:1<56::AID-AJIM9>3.0.CO;2-Q.
[49]  Calleman, C.J.; Wu, Y.; He, F.; Tian, G.; Bergmark, E.; Zhang, S.; Deng, H.; Wang, Y.; Crofton, K.M.; Fennell, T.; Costa, L.G. Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol. Appl. Pharmacol. 1994, 126, 361–371, doi:10.1006/taap.1994.1127.
[50]  Myers, J.E.; Macun, I. Acrylamide neuropathy in a South African factory: An epidemiologic investigation. Am. J. Ind Med. 1991, 19, 487–493, doi:10.1002/ajim.4700190406.
[51]  Kesson, C.M.; Baird, A.W.; Lawson, D.H. Acrylamide poisoning. Postgrad. Med. J. 1977, 53, 16–17, doi:10.1136/pgmj.53.615.16.
[52]  Garland, T.O.; Patterson, M.W. Six cases of acrylamide poisoning. Br. Med. J. 1967, 4, 134–138, doi:10.1136/bmj.4.5572.134.
[53]  He, F.S.; Zhang, S.L.; Wang, H.L.; Li, G.; Zhang, Z.M.; Li, F.L.; Dong, X.M.; Hu, F.R. Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scand. J. Work Environ. Health 1989, 15, 125–129, doi:10.5271/sjweh.1878.
[54]  Kjuus, H.; Goffeng, L.O.; Heier, M.S.; Sj?holm, H.; Ovreb?, S.; Skaug, V.; Paulsson, B.; T?rnqvist, M.; Brudal, S. Effects on the peripheral nervous system of tunnel workers exposed to acrylamide and N-methylolacrylamide. Scand. J. Work Environ. Health 2004, 30, 21–29, doi:10.5271/sjweh.761.
[55]  Goffeng, L.O.; Kjuus, H.; Heier, M.S.; Alvestrand, M.; Ulvestad, B.; Skaug, V. Colour vision and light sensitivity in tunnel workers previously exposed to acrylamide and N-methylolacrylamide containing grouting agents. Neurotoxicology 2008, 29, 31–39, doi:10.1016/j.neuro.2007.08.013.
[56]  Rampello, L.; Vecchio, I.; Migliore, M.; Malaguarnera, M.; Malaguarnera, G.; Rampello, L. The most frequent medical and surgical neuralgias: Physiopathology and clinical pictures. Acta Med. Mediterr. 2012, 28, 109–111.
[57]  Rampello, L.; Vecchio, I.; Malaguarnera, M.; Rampello, L. Restless legs sindrome. Acta Med. Mediterr. 2012, 28, 153, doi:10.1136/bmj.d4833.
[58]  Frazzetto, P.M.; Malaguarnera, G.; Gagliano, C.; Lucca, F.; Giordano, M.; Rampello, L.; Rampello, L.; Malaguarnera, M. Biohumoral tests in chronic pesticides exposure. Acta Med. Mediterr. 2011, 28, 237–246.
[59]  Sayre, L.M.; Autilio-Gambetti, L.; Gambetti, P. Pathogenesis of experimental giant neurofilamentous axonopathies: A unified hypothesis based on chemical modification of neurofilaments. Brain Res. 1985, 357, 69–83.
[60]  LoPachin, R.M.; Balaban, C.D.; Ross, J.F. Acrylamide axonopathy revisited. Toxicol. Appl. Pharmacol. 2003, 188, 135–153, doi:10.1016/S0041-008X(02)00072-8.
[61]  Godin, A.C.; Dubielzig, R.R.; Giuliano, E.; Ekesten, B. Retinal and optic nerve degeneration in cattle after accidental acrylamide intoxication. Vet. Ophthalmol. 2000, 3, 235–239, doi:10.1046/j.1463-5224.2000.00109.x.
[62]  Paulsson, B.; Larsen, K.O.; T?rnqvist, M. Hemoglobin adducts in the assessment of potential occupational exposure to acrylamides—Three case studies. Scand. J. Work Environ. Health 2006, 32, 154–159, doi:10.5271/sjweh.991.
[63]  Ahmed, H.H.; Elmegeed, G.A.; El Sayed, S.M.; Abd-Elhalim, M.M.; Shousha, W.G.; Shafic, R.W. Potent neuroprotective role of novel melatonin derivatives for management of central neuropathy induced by acrylamide in rats. Eur. J. Med. Chem. 2010, 45, 5452–5459, doi:10.1016/j.ejmech.2010.09.017.
[64]  Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; T?rnqvist, M. Acrylamide: A cooking carcinogen? Chem. Res. Toxicol. 2000, 13, 517–522.
[65]  Xi, C.Z. Long-term exposure to various types of dietary fat modulates acrylamide-induced preneoplastic lesions of colon mucosa through Wnt/beta-catenin signaling in rats. Toxicol. Mech. Meth. 2009, 19, 285–291, doi:10.1080/15376510802637670.
[66]  Malaguarnera, M. Carnitine derivatives: Clinical usefulness. Curr. Opin. Gastroenterol. 2012, 28, 166–176, doi:10.1097/MOG.0b013e3283505a3b.
[67]  Malaguarnera, M. Acetyl-l-carnitine in hepatic encephalopathy. Metab. Brain Dis. 2013, 28, 193–199, doi:10.1007/s11011-013-9376-4.
[68]  Bucolo, C.; Marrazzo, G.; Platania, C.B.; Drago, F.; Leggio, G.M.; Salomone, S. Fortified extract of red berry, Ginkgo biloba, and white willow bark in experimental early diabetic retinopathy. J. Diabetes Res. 2013, 2013, 432695, doi:10.1155/2013/432695.
[69]  Li Volti, G.; Salomone, S.; Sorrenti, V.; Mangiameli, A.; Urso, V.; Siarkos, I.; Galvano, F.; Salamone, F. Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice. Cardiovasc. Diabetol. 2011, 10, 62, doi:10.1186/1475-2840-10-62.
[70]  Levine, R.A.; Smith, R.E. Sources of variability of acrylamide levels in cracker model. J. Agric. Food Chem. 2005, 53, 4410–4416, doi:10.1021/jf047887t.
[71]  Casado, F.J.; Sanchez, A.H.; Montano, A. Reduction of acrylamide content of ripe olives by selected additives. Food Chem. 2010, 119, 161–166, doi:10.1016/j.foodchem.2009.06.009.
[72]  Mustafa, A.; Andersson, R.; Rosen, J.; Kamal-Eldin, A.; Aman, P. Factors influencing acrylamide content and color in rye crisp bread. J. Agric. Food Chem. 2005, 53, 5985–5989, doi:10.1021/jf050020q.
[73]  Keramat, J.; LeBail, A.; Prost, C.; Jafari, M. Acrylamide in baking products: A review article. Food Bioprocess. Technol. 2011, 4, 530–543, doi:10.1007/s11947-010-0495-1.
[74]  Loeb, A.L.; Anderson, R.J. Antagonism of acrylamide neurotoxicity by supplementation with vitamin B6. Neurotoxicology 1981, 2, 625–633.
[75]  Kemplay, S.; Martin, P.; Wilson, S. The effects of thioctic acid on motor nerve terminals in acrylamide-poisoned rats. Neuropathol. Appl. Neurobiol. 1988, 14, 275–288, doi:10.1111/j.1365-2990.1988.tb00888.x.
[76]  Sabri, M.I.; Dairman, W.; Fenton, M.; Juhasz, L.; Ng, T.; Spencer, P.S. Effect of exogenous pyruvate on acrylamide neuropathy in rats. Brain Res. 1989, 483, 1–11, doi:10.1016/0006-8993(89)90028-0.
[77]  Saita, K.; Ohi, T.; Hanaoka, Y.; Furukawa, S.; Furukawa, Y.; Hayashi, K.; Matsukura, S. A catechol derivative (4-methylcatechol) accelerates the recovery from experimental acrylamide-induced neuropathy. J. Pharmacol. Exp. Ther. 1996, 276, 231–237.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133