全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computing Power and Sample Size for Informational Odds Ratio

DOI: 10.3390/ijerph10105239

Keywords: informational odds ratios, power, sample size

Full-Text   Cite this paper   Add to My Lib

Abstract:

The informational odds ratio (IOR) measures the post-exposure odds divided by the pre-exposure odds ( i.e., information gained after knowing exposure status). A desirable property of an adjusted ratio estimate is collapsibility, wherein the combined crude ratio will not change after adjusting for a variable that is not a confounder. Adjusted traditional odds ratios (TORs) are not collapsible. In contrast, Mantel-Haenszel adjusted IORs, analogous to relative risks (RRs) generally are collapsible. IORs are a useful measure of disease association in case-referent studies, especially when the disease is common in the exposed and/or unexposed groups. This paper outlines how to compute power and sample size in the simple case of unadjusted IORs.

References

[1]  Efird, J.T.; Lea, S.; Toland, A.; Phillips, C.J. Informational odds ratios: A useful measure of epidemiologic association. Environ. Health Insight. 2012, 6, 17–25.
[2]  Pagano, M.; Gauvreau, K. Principles of Biostatistics; Duxbury Press: Belmont, CA, USA, 1993; pp. 211–233.
[3]  Kelsey, J.L.; Whittemore, A.S.; Evans, A.S.; Thompson, W.D. Methods in Observational Epidemiology, 2nd ed. ed.; Oxford University Press: New York, NY, USA, 1996; pp. 327–334.
[4]  Le Cam, L. Asymptotic Methods in Statistical Decision Theory; Springer-Verlag: New York, NY, USA, 1986; pp. 96–112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133