Our research focused on the production, characterization and application of silver nanoparticles (AgNPs), which can be utilized in biomedical research and environmental cleaning applications. We used an environmentally friendly extracellular biosynthetic technique for the production of the AgNPs. The reducing agents used to produce the nanoparticles were from aqueous extracts made from the leaves of various plants . Synthesis of colloidal AgNPs was monitored by UV-Visible spectroscopy. The UV-Visible spectrum showed a peak between 417 and 425 nm corresponding to the Plasmon absorbance of the AgNPs. The characterization of the AgNPs such as their size and shape was performed by Atom Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques which indicated a size range of 3 to 15 nm. The anti-bacterial activity of AgNPs was investigated at concentrations between 2 and 15 ppm for Gram-negative and Gram-positive bacteria. Staphylococcus aureus and Kocuria rhizophila, Bacillus thuringiensis (Gram-positive organisms); Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium (Gram-negative organisms) were exposed to AgNPs using Bioscreen C. The results indicated that AgNPs at a concentration of 2 and 4 ppm, inhibited bacterial growth. Preliminary evaluation of cytotoxicity of biosynthesized silver nanoparticles was accomplished using the InQ? Cell Research System instrument with HEK 293 cells. This investigation demonstrated that silver nanoparticles with a concentration of 2 ppm and 4 ppm were not toxic for human healthy cells, but inhibit bacterial growth.
References
[1]
Jiang, Z.J.; Liu, C.Y.; Sun, L.W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Am. Chem. Soc. 2004, 71, 2341–2343.
[2]
Wijnhoven, S.W.P.; Peijnenburg, W.J.G.M.; Herberts, C.A.; Hagens, W.I.; Oomen, A.G.; Heugens, E.H.W.; Roszek, B.; Bisschops, J.; Gosens, I.; van De Meent, D.; et al. Nano-silver—A review ofavailable data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3, 109–138, doi:10.1080/17435390902725914.
[3]
Scheringer, M.; MacLeod, M.; Behra, T.; Sigg, L.; Hungerbuhler, K. Environmental risks associated with nanoparticulate silver used as biocide. Household Pers. Care Today 2010, 1, 34–37.
[4]
Nowack, B. Nanosilver revisited downstream. Science 2010, 330, 1054–1055, doi:10.1126/science.1198074.
[5]
Benn, T.M.; Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133–4139, doi:10.1021/es7032718.
[6]
Geranio, L.; Heuberger, M.; Nowack, B. Behavior of silver nanotextiles during washing. Environ. Sci. Technol. 2009, 43, 8113–8118, doi:10.1021/es9018332.
[7]
Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959–8964, doi:10.1021/es801785m.
[8]
Kaegi, R.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Mueller, E.; Vonbank, R.; Boller, M.; Burkhardt, M. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 2010, 158, 2900–2905, doi:10.1016/j.envpol.2010.06.009.
[9]
Rai, M.; Duran, N. Metal Nanoparticles in Microbiology; Springer: Berlin, Germany, 2011.
[10]
Bonsak, J.; Mayandi, J.; Th?gersen, A.; Marstein, E.S.; Mahalingam, U. Chemical synthesis of silver nanoparticles for solar cell applications. Phys. Status Solidi C 2011, 8, 924–927, doi:10.1002/pssc.201000275.
[11]
Nanoparticles Inspire Plasmonic Solar Cell. Available online: http://images.iop.org/objects/ntw/news/8/3/48/pdf.pdf (accessed on 21 March 2009).
[12]
Technical Articles & Reports on Plastic Industry: Silver Nanoparticles Can Increase Electrical Power Generation of Polymer Solar Cells. Available online: http://www.plastemart.com/Plastic-TechnicalArticle.asp?LiteratureID=1436&Paper=silver-nanoparticles-increase-electrical-power-generation-polymer-solar-cells (accessed on 30 June 2010).
[13]
McFarland, A.D.; van Duyne, R.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062, doi:10.1021/nl034372s.
[14]
Dwivedi, P.; Narvi, S.S.; Tewari, R.P. Green route to a novel Ag/PLGA bionanocomposite: A self-sterilizing surgical suture biomaterial. Int. J. Adv. Eng. Sci. Technol. 2012, 2, 236–243.
[15]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 168–171, doi:10.1016/j.nano.2007.02.001.
[16]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109, doi:10.1016/j.nano.2009.04.006.
[17]
Lara, H.H.; Garza-Trevi?o, E.N.; Ixtepan-Turrent, L.; Singh, K.D. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011, doi:10.1186/1477-3155-9-30.
[18]
Illingworth, B.; Bianco, R.W.; Weisberg, S. In vivo efficacy of silver-coated fabric against Staphylococcus epidermidis. J. Heart Valve Dis. 2000, 9, 135–141.
[19]
Hoffmann, S. Silver sulfadiazine: An antibacterial agent for topical use in burns: A review of the literature. J. Plast. Surg. Hand Surg. 1984, 18, 119–126, doi:10.3109/02844318409057413.
[20]
Lara, H.H.; Ayala-Nunez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 2010, 8, doi:10.1186/1477-3155-8-1.
[21]
Petrus, E.M.; Tinakumari, S.; Chai, L.C.; Ubong, A.; Tunung, R.; Elexson, N.; Chai, L.F.; Son, R. A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int. Food Res. J. 2011, 18, 55–66.
[22]
Ansari, M.A.; Khan, H.M.; Khan, A.A.; Malik, A.; Sultan, A.; Shahid, M.; Shujatullah, F.; Azam, A. Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections. Biol. Med. 2011, 3, 141–146.
[23]
Prakash, A.; Sharma, S.; Ahmad, N.; Ghosh, A.; Sinha, P. Synthesis of AgNPs by Bacillus Cereus bacteria and their antimicrobial potential. J.Biomater.Nanobiotechnol. 2011, 2, 156–162.
[24]
Egorova, E.M. Interaction of silver nanoparticles with biological objects: Antimicrobial properties and toxicity for the other living organisms. J. Phys. 2011, 291, doi:10.1088/1742-6596/291/1/012050.
[25]
Sadowski, Z. Biosynthesis and Application of Silver and Gold Nanoparticles. Available online: www.intechopen.com/books/silver-nanoparticles/biosynthesis-and-application-of-silver-and-gold-nanoparticles (accessed on 18 December 2012).
[26]
Sathyavathi1, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N. Biosynthesis of silver nanoparticles using coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 2010, 3, 1–6, doi:10.1166/asl.2010.1080.
[27]
Virender, K.S.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96, doi:10.1016/j.cis.2008.09.002.
[28]
Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.Y. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachtaindica (Neem) leaves MJ. Langmuir 2003, 19, 237–246.
[29]
Umashankari, J.; Inbakandan, D.; Ajithkumar, T.T.; Balasubramanian, T. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat. Biosy. 2012, doi:10.1186/2046-9063-8-11.
[30]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 2005, 17, 566–572, doi:10.1021/cm048292g.
[31]
Richardson, A.; Chan, B.C.; Crouch, R.D.; Janiec, A.; Chan, B.C.; Crouch, R.D. Synthesis of silver nanoparticles: An undergraduate laboratory using green approach. Chem. Educ. 2006, 11, 331–333.
[32]
Vaidyanathan, R.; Kalishwaralal, K.; Gopalram, S.; Gurunathan, S. Nanosilver—The burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 2009, 27, 924–937, doi:10.1016/j.biotechadv.2009.08.001.
[33]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96, doi:10.1016/j.cis.2008.09.002.
[34]
Satyajit, D.; Sarker, Y. Maruyama Magnolia: The Genus Magnolia (Medicinal and Aromatic Plants—Industrial Profiles); Taylor& Francis: New York, NY, USA, 2003.
[35]
Wolverton, B.C.; Johnson, A.; Bounds, K. Interior Landscape Plants for Indoor Air Pollution Abatement NASA. Available online: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930073077_1993073077.pdf (accessed on 18 September 2012).
Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631, doi:10.1021/bp034070w.
[38]
Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157, doi:10.1002/jctb.2023.
[39]
Growth Curves USA. Available online: www.growthcurvesusa.com (accessed on 28 December 2008).
[40]
Labrenz, M.; Druschel, G.K.; Thomsen, E.T.; Gilbert, B.; Welch, S.A.; Kemner, K.M. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000, 1, 744–747.
Zhang, Y.; Yang, D.; Kong, Y.; Wang, X.; Pandoli, O.; Gao, G. Synergetic antibacterial effects of silver nanoparticles@Aloe Vera prepared via a green method. Nano Biomed. Eng. 2010, 2, 252–257.
[43]
Gogoi, S.; Gopinath, P.; Paul, A.; Ramesh, A.; Ghosh, S.; Chattopadhyay, A. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 2006, 22, 9322–9328, doi:10.1021/la060661v.
[44]
Kim, S.H.; Lee, H.S.; Ryu, D.S.; Choi, S.J.; Lee, D.S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli Korean. J. Microbiol. Biotechnol. 2011, 39, 77–85.
Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R. Effect of surfactant and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys.Chem. 2008, 112, 5825–5834.
[48]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720, doi:10.1128/AEM.02218-06.
[49]
Sur, I.; Altunbek, M.; Kahraman, M.; Culha, M. The influence of the surface chemistry of silver nanoparticles on cell death. Nanotechnology 2012, doi:10.1088/0957-4484/23/37/375102.
[50]
Kim, T.-H.; Kim, M.; Park, H.-S.; Shin, U.S.; Gong, M.-S.; Kim, H.-W. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A 2012, 100, 1033–1043.
[51]
Kawata, K.; Osawa, M.; Okabe, S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 2009, 43, 6046–6051, doi:10.1021/es900754q.
Bhakat, C.; Chetal, G.; Sarkar, P.; Singh, P.; Babu, S.; Reddy, A. Effects of silver nanoparticles synthesize from ficus benjamina on normal cells and cancer cells. IOSR J. Pharm. Biol. Sci. 2012, 1, 33–36.