Background: Electronic cigarettes (ECs) have been marketed as an alternative-to-smoking habit. Besides chemical studies of the content of EC liquids or vapour, little research has been conducted on their in vitro effects. Smoking is an important risk factor for cardiovascular disease and cigarette smoke (CS) has well-established cytotoxic effects on myocardial cells. The purpose of this study was to evaluate the cytotoxic potential of the vapour of 20 EC liquid samples and a “base” liquid sample (50% glycerol and 50% propylene glycol, with no nicotine or flavourings) on cultured myocardial cells. Included were 4 samples produced by using cured tobacco leaves in order to extract the tobacco flavour. Methods: Cytotoxicity was tested according to the ISO 10993-5 standard. By activating an EC device at 3.7 volts (6.2 watts—all samples, including the “base” liquid) and at 4.5 volts (9.2 watts—four randomly selected samples), 200 mg of liquid evaporated and was extracted in 20 mL of culture medium. Cigarette smoke (CS) extract from three tobacco cigarettes was produced according to ISO 3308 method (2 s puffs of 35 mL volume, one puff every 60 s). The extracts, undiluted (100%) and in four dilutions (50%, 25%, 12.5%, and 6.25%), were applied to myocardial cells (H9c2); percent-viability was measured after 24 h incubation. According to ISO 10993-5, viability of <70% was considered cytotoxic. Results: CS extract was cytotoxic at extract concentrations >6.25% (viability: 76.9 ± 2.0% at 6.25%, 38.2 ± 0.5% at 12.5%, 3.1 ± 0.2% at 25%, 5.2 ± 0.8% at 50%, and 3.9 ± 0.2% at 100% extract concentration). Three EC extracts (produced by tobacco leaves) were cytotoxic at 100% and 50% extract concentrations (viability range: 2.2%–39.1% and 7.4%–66.9% respectively) and one (“Cinnamon-Cookies” flavour) was cytotoxic at 100% concentration only (viability: 64.8 ± 2.5%). Inhibitory concentration 50 was >3 times lower in CS extract compared to the worst-performing EC vapour extract. For EC extracts produced by high-voltage and energy, viability was reduced but no sample was cytotoxic according to ISO 10993-5 definition. Vapour produced by the “base” liquid was not cytotoxic at any extract concentration. Cell survival was not associated with nicotine concentration of EC liquids. Conclusions: This study indicates that some EC samples have cytotoxic properties on cultured cardiomyoblasts, associated with the production process and materials used in flavourings. However, all EC vapour extracts were significantly less cytotoxic compared to CS extract.
References
[1]
Ockene, I.S.; Miller, N.H. Cigarette smoking, cardiovascular disease, and stroke: A statement for healthcare professionals from the American Heart Association. Circulation 1997, 96, 3243–3247, doi:10.1161/01.CIR.96.9.3243.
[2]
Rigotti, N.A.; Pipe, A.L.; Benowitz, N.L.; Arteaga, C.; Garza, D.; Tonstad, S. Efficacy and safety of varenicline for smoking cessation in patients with cardiovascular disease: A randomized trial. Circulation 2009, 121, 221–229.
[3]
Moore, D.; Aveyard, P.; Connock, M.; Wang, D.; Fry-Smith, A.; Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. BMJ 2009, 338, doi:10.1136/bmj.b1024.
[4]
Rodu, B. The scientific foundation for tobacco harm reduction, 2006–2011. Harm Reduct. J. 2011, 8, doi:10.1186/1477-7517-8-19.
[5]
King, B.A.; Alam, S.; Promoff, G.; Arrazola, R.; Dube, S.R. Awareness and ever use of electronic cigarettes among U.S. adults, 2010–2011. Nicotine Tob. Res. 2013, doi:10.1093/ntr/ntt013.
[6]
Cobb, N.K.; Byron, M.J.; Abrams, D.B.; Shields, P.G. Novel nicotine delivery systems and public health: The rise of the “e-cigarette”. Am. J. Public Health 2010, 100, 2340–2342, doi:10.2105/AJPH.2010.199281.
[7]
Chen, I.L. FDA summary of adverse events on electronic cigarettes. Nicotine Tob. Res. 2013, 15, 615–616.
[8]
WHO Statement. Questions and Answers on Electronic Cigarettes or Electronic Nicotine Delivery Systems (ENDS). 2013. Available online: http://www.who.int/tobacco/communications/statements/eletronic_cigarettes/en/index.html (accessed on 14 October 2013).
[9]
Pryor, W.A.; Stone, K. Oxidants in cigarette smoke: Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrie. Ann. NY Acad. Sci. 1993, 686, 12–28, doi:10.1111/j.1749-6632.1993.tb39148.x.
[10]
Yamada, S.; Zhang, X.Q.; Kadono, T.; Matsuoka, N.; Rollins, D.; Badger, T.; Rodesch, C.K.; Barry, W.H. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations. Toxicol. Appl. Pharmacol. 2009, 236, 71–77.
[11]
Romagna, G.; Allifranchini, E.; Bocchietto, E.; Todeschi, S.; Esposito, M.; Farsalinos, K.E. Cytotoxicity evaluation of electronic cigarette vapor extract on cultured mammalian fibroblasts (ClearStream-LIFE): Comparison with tobacco cigarette smoke extract. Inhal. Toxicol. 2013, 25, 354–361.
[12]
Farsalinos, K.E.; Romagna, G.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Evaluation of electronic cigarette use (vaping) topography and estimation of liquid consumption: Implications for research protocol standards definition and for public health authorities’ regulation. Int. J. Environ. Res. Public Health 2013, 10, 2500–2514, doi:10.3390/ijerph10062500.
[13]
ISO 10993:5 Standard. Biological Evaluation of Medical Devices—Part 5: Tests for in vitro Cytotoxicity. 2009. Available online: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36406 (accessed on 14 October 2013).
[14]
Turner, N.A.; Xia, F.; Azhar, G.; Zhang, X.; Liu, L.; Wei, J.Y. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J. Mol. Cell. Cardiol. 1998, 30, 1789–1801, doi:10.1006/jmcc.1998.0743.
[15]
Das, A.; Dey, N.; Ghosh, A.; Das, S.; Chattopadhyay, D.J.; Chatterjee, I.B. Molecular and cellular mechanisms of cigarette smoke-induced myocardial injury: Prevention by vitamin C. PLoS One 2012, 7, doi:10.1371/journal.pone.0044151.
[16]
Niu, J.; Wang, K.; Kolattukudy, P.E. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J. Pharmacol. Exp. Ther. 2011, 338, 53–61, doi:10.1124/jpet.111.179978.
[17]
Zordoky, B.N.; El-Kadi, A.O. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and beta-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependant mechanism. Toxicol. Vitro 2010, 24, 863–871, doi:10.1016/j.tiv.2009.12.002.
[18]
ISO 3308: Routine Analytical Cigarette-Smoking Machine—Definitions and Standard Conditions; International Organization for Standardization (ISO): Geneva, Switzerland, 2000.
[19]
Mossman, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Method. 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[20]
Dawkins, L.; Turner, J.; Roberts, A.; Soar, K. “Vaping” profiles and preferences: An online survey of electronic cigarette users. Addiction 2013, 108, 1115–1125, doi:10.1111/add.12150.
[21]
arela-Carver, A.; Parker, H.; Kleinert, C.; Rimoldi, O. Adverse effects of cigarette smoke and induction of oxidative stress in cardiomyocytes and vascular endothelium. Curr. Pharm. Des. 2010, 16, 2551–2558, doi:10.2174/138161210792062830.
Zhang, J.; Liu, Y.; Shi, J.; Larson, D.F.; Watson, R.R. Side-stream cigarette smoke induces dose-response in systemic inflammatory cytokine production and oxidative stress. Exp. Biol. Med. 2002, 227, 823–829.
[24]
Armani, C.; Landini, L., Jr; Leone, A. Molecular and biochemical changes of the cardiovascular system due to smoking exposure. Curr. Pharm. Des. 2009, 15, 1038–1053, doi:10.2174/138161209787846973.
[25]
Izzotti, A.; D’Agostini, F.; Balansky, R.; Degan, P.; Pennisi, T.M.; Steele, V.E.; De Flora, S. Exposure of mice to cigarette smoke and/or light causes DNA alterations in heart and aorta. Mutat. Res. 2008, 644, 38–42, doi:10.1016/j.mrfmmm.2008.06.012.
[26]
Gvozdjáková, A.; Bada, V.; Sány, L.; Kucharská, J.; Kruty, F.; Bozek, P.; Trstansky, L.; Gvozdják, J. Smoke cardiomyopathy: Disturbance of oxidative processes in myocardial mitochondria. Cardiovasc. Res. 1984, 18, 229–232, doi:10.1093/cvr/18.4.229.
[27]
Taylor, A.E.; Johnson, D.C.; Kazemi, H. Environmental tobacco smoke and cardiovascular disease. A position paper from the Council on Cardiopulmonary and Critical Care, American Heart Association. Circulation 1992, 86, 699–702, doi:10.1161/01.CIR.86.2.699.
[28]
Wang, L.; Sun, Y.; Asahi, M.; Otsu, K. Acrolein, an environmental toxin, induces cardiomyocyte apoptosis via elevated intracellular calcium and free radicals. Cell. Biochem. Biophys. 2011, 61, 131–136, doi:10.1007/s12013-011-9169-5.
[29]
Aberle, N.S.; Privratsky, J.R.; Burd, L.; Ren, J. Combined acetaldehyde and nicotine exposure depresses cardiac contraction in ventricular myocytes: Prevention by folic acid. Neurotoxicol. Teratol. 2003, 25, 731–736, doi:10.1016/j.ntt.2003.07.008.
[30]
Szende, B.; Tyihák, E. Effect of formaldehyde on cell proliferation and death. Cell. Biol. Int. 2010, 34, 1273–1282, doi:10.1042/CBI20100532.
[31]
Limaye, D.A.; Shaikh, Z.A. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol. Appl. Pharmacol. 1999, 154, 59–66, doi:10.1006/taap.1998.8575.
[32]
Antal, M.J.; Mok, W.S.L.; Roy, J.C.; T-Raissi, A. Pyrolytic sources of hydrocarbons from biomass. J. Anal. Appl. Pyrol. 1985, 8, 291–303, doi:10.1016/0165-2370(85)80032-2.
[33]
Stein, Y.S.; Antal, M.J.; Jones, M.J. A study of the gas-phase pyrolysis of glycerol. J. Anal. Appl. Pyrol. 1983, 4, 283–296, doi:10.1016/0165-2370(83)80003-5.
[34]
Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; Jacob, P.; Benowitz, N. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2013, doi:10.1136/tobaccocontrol-2012-050859.
[35]
Lauterbach, J.; Laugesen, M. Comparison of Toxicant Levels in Mainstream Aerosols Generated by Ruyan? Electronic Nicotine Delivery Systems (ENDS) and Conventional Cigarette Products. Proceedings of Society of Toxicology Conference, San Francisco, CA, USA, 11–15 March, 2012; Available online: http://www.healthnz.co.nz/News2012SOTposter1861.pdf (accessed on 6 September 2013).
[36]
Suzuki, J.; Bayna, E.; dalle Moll, E.; Lew, W.Y. Nicotine inhibits cardiac apoptosis induced by lipopolysaccharide in rats. J. Amer. Coll. Cardiol. 2003, 41, 482–488.
[37]
Laytragoon-Lewin, N.; Bahram, F.; Rutqvist, L.E.; Turesson, I.; Lewin, F. Direct effects of pure nicotine, cigarette smoke extract, Swedish-type smokeless tobacco (snus) extract and ethanol on human normal endothelial cells and fibroblasts. Anticancer Res. 2011, 31, 1527–1534.
[38]
Argentin, G.; Cicchetti, R. Genotoxic and antiapoptotic effect of nicotine on human gingival fibroblasts. Toxicol. Sci. 2004, 79, 75–81, doi:10.1093/toxsci/kfh061.
[39]
Kim, D.H.; Kim, C.H.; Kim, M.S.; Kim, J.Y.; Jung, K.J.; Chung, J.H.; An, W.G.; Lee, J.W.; Yu, B.P.; Chung, H.Y. Suppression of age-related inflammatory NF-kappaB activation by cinnamaldehyde. Biogerontology 2007, 8, 545–554, doi:10.1007/s10522-007-9098-2.
[40]
Allen, C.M.; Blozis, G.G. Oral mucosal reactions to cinnamon-flavored chewing gum. J. Amer. Dent. Assn. 1988, 116, 664–667.
[41]
Friedman, M.; Kozukue, N.; Harden, L.A. Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J. Agr. Food Chem. 2000, 48, 5702–5709, doi:10.1021/jf000585g.
[42]
Ulker, Z.; Alpsoy, L.; Mihmanli, A. Assessment of cytotoxic and apoptotic effects of benzaldehyde using different assays. Hum. Exp. Toxicol. 2013, 32, 858–864, doi:10.1177/0960327112470271.
[43]
McDaniel, P.A.; Solomon, G.; Malone, R.E. The tobacco industry and pesticide regulations: Case studies from tobacco industry archives. Environ. Health Perspect. 2005, 113, 1659–1665, doi:10.1289/ehp.7452.
[44]
Bahl, V.; Lin, S.; Xu, N.; Davis, B.; Wang, Y.H.; Talbot, P. Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models. Reprod. Toxicol. 2012, 34, 529–537.
[45]
Cahn, Z.; Siegel, M. Electronic cigarettes as a harm reduction strategy for tobacco control: A step forward of a repeat of past mistakes? J. Public Health Policy 2011, 32, 16–31, doi:10.1057/jphp.2010.41.