全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Environmental Reservoirs in Human Campylobacteriosis

DOI: 10.3390/ijerph10115886

Keywords: campylobacteriosis, Campylobacter spp., C. jejuni, environmental reservoirs, risk assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Campylobacteriosis is infection caused by the bacteria Campylobacter spp. and is considered a major public health concern. Campylobacter spp. have been identified as one of the most common causative agents of bacterial gastroenteritis. They are typically considered a foodborne pathogen and have been shown to colonise the intestinal mucosa of all food-producing animals. Much emphasis has been placed on controlling the foodborne pathway of exposure, particularly within the poultry industry, however, other environmental sources have been identified as important contributors to human infection. This paper aims to review the current literature on the sources of human exposure to Campylobacter spp. and will cover contaminated poultry, red meat, unpasteurised milk, unwashed fruit and vegetables, compost, wild bird faeces, sewage, surface water, ground water and drinking water. A comparison of current Campylobacter spp. identification methods from environmental samples is also presented. The review of literature suggests that there are multiple and diverse sources for Campylobacter infection. Many environmental sources result in direct human exposure but also in contamination of the food processing industry. This review provides useful information for risk assessment.

References

[1]  Wilson, D.J.; Gabriel, E.; Leatherbarrow, A.J.H.; Cheesbrough, J.; Gee, S.; Bolton, E.; Fox, A.; Fearnhead, P.; Hart, C.A.; Diggle, P.J. Tracing the source of campylobacteriosis. PLoS Genet. 2008, 4, 1–9, doi:10.1371/journal.pgen.0040001.
[2]  Strachan, N.J.; Gormley, F.J.; Rotariu, O.; Ogden, I.D.; Miller, G.; Dunn, G.M.; Sheppard, S.K.; Dallas, J.F.; Reid, T.M.; Howie, H.; et al. Attribution of Campylobacter infections in northeast Scotland to specific sources by use of multilocus sequence typing. J. Infect. Dis. 2009, 199, 1205–1208, doi:10.1086/597417.
[3]  Sheppard, S.K.; Dallas, J.F.; Strachan, N.J.C.; MacRae, M.; McCarthy, N.D.; Wilson, D.J.; Gormley, F.J.; Falush, D.; Ogden, I.D.; Maiden, M.C.J.; et al. Campylobacter genotyping to determine the source of human infection. Clin. Infect. Dis. 2009, 48, 1072–1078, doi:10.1086/597402.
[4]  European Food Safety Authority. The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2005. EFSA J. 2006, 94, 4–288.
[5]  Altekruse, S.F.; Stern, N.J.; Fields, P.I.; Swerdlow, D.L. Campylobacter jejuni—An emerging foodbourne pathogen. Emerg. Infect. Dis. 1999, 5, 28–35, doi:10.3201/eid0501.990104.
[6]  Nguyen, H. Acanthamoeba-Campylobacter Interactions; University of Ottawa: Ottowa, ON, Canada, 2001.
[7]  Australian National Notifiable Diseases Surveillance System. Number of Notifications for All Diseases by Year, Australia, 1991 to 2009 and Year-to-Date Notifications for 2010; Australian Department of Health and Aging: Adelaide, Australia, 2010.
[8]  Patrick, M.E.; Gilbert, M.J.; Blaser, M.J.; Tauxe, R.V.; Wagenaar, J.A.; Fitzgerald, C. Human infections with new subspecies of Campylobacter fetus. Emerg. Infect. Dis. 2013, 19, 1679–1680.
[9]  Ternhag, A.; T?rner, A.; Svensson, ?.; Giesecke, J.; Ekdahl, K. Mortality following Campylobacter infection: A registry-based linkage study. BMC Infect. Dis. 2005, 5, 1–5, doi:10.1186/1471-2334-5-1.
[10]  Gillespie, I.A.; O’Brien, S.J.; Bolton, F.J. Age patterns of persons with campylobacteriosis, England and Wales, 1990–2007. Emerg. Infect. Dis. 2009, 15, 2046–2048, doi:10.3201/eid1512.090280.
[11]  Mughini Gras, L.; Smid, J.H.; Wagenaar, J.A.; de Boer, A.G.; Havelaar, A.H.; Friesema, I.H.; French, N.P.; Busani, L.; van Pelt, W. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: A combined case-control and source attribution analysis. PLoS One 2012, 7, e42599, doi:10.1371/journal.pone.0042599.
[12]  Jones, K. Campylobacters in water, sewage and the environment. Appl. Microbiol. 2001, 90, 68–79, doi:10.1046/j.1365-2672.2001.01216.x.
[13]  Newell, D.G.; Shreeve, J.E.; Toszeghy, M.; Domingue, G.; Bill, S.; Humphrey, T.; Mead, G. Changes in the carriage of Campylobacter strains by poultry carcasses during processing in abattoirs. Appl. Environ. Microbiol. 2001, 67, 2636–2640.
[14]  Newell, D.G.; Fearnley, C. Sources of Camplobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003, 69, 4343–4351, doi:10.1128/AEM.69.8.4343-4351.2003.
[15]  Stafford, R.J.; Schluter, P.J.; Wilson, A.J.; Kirk, M.D.; Hall, G.; Unicomb, L. Population-attributable risk estimates for risk factors associated with campylobacter infection, australia. Emerg. Infect. Dis. 2008, 14, 895–901, doi:10.3201/eid1406.071008.
[16]  Meldrum, R.J.; Griffiths, J.K.; Smith, R.M.M.; Evans, M.R. The seasonality of human Campylobacter infection and Campylobacter isolates from fresh, retail chicken in Wales. Epidemiol. Infect. 2005, 133, 49–52, doi:10.1017/S0950268804003188.
[17]  Mullner, P.; Spencer, S.E.F.; Wilson, D.J.; Jones, G.; Noble, A.D.; Midwinter, A.C.; Collins-Emerson, J.M.; Carter, P.; Hathaway, S.; French, N.P. Assigning the source of human campylobacteriosis in New Zealand: A comparative genetic and epidemiological approach. Infect. Genet. Evol. 2009, 9, 1311–1319, doi:10.1016/j.meegid.2009.09.003.
[18]  Pitk?nen, T. Review of Campylobacter spp. in drinking and environmental waters. J. Microbiol. Methods 2013, 95, 39–47, doi:10.1016/j.mimet.2013.06.008.
[19]  French, N.P.; Midwinter, A.; Holland, B.; Collins-Emerson, J.; Pattison, R.; Colles, F.; Carter, P. Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl. Environ. Microbiol. 2009, 75, 779–783.
[20]  Brown, P.E.; Christensen, O.F.; Clough, H.E.; Diggle, P.J.; Hart, C.A.; Hazel, S.; Kemp, R.; Leatherbarrow, A.J.H.; Moore, A.; Sutherst, J.; et al. Frequency and spatial distribution of environmental Campylobacter spp. Appl. Environ. Microbiol. 2004, 70, 6501–6511, doi:10.1128/AEM.70.11.6501-6511.2004.
[21]  Jones, A.B.; O’Donohue, M.J.; Udy, J.; Dennison, W.C. Assessing ecological impacts of shrimp and sewage effluent: Biological indicators with standard water quality analyses. Estuar. Coast. Shelf Sci. 2001, 52, 91–109, doi:10.1006/ecss.2000.0729.
[22]  Black, A.P.; Kirk, M.D.; Millard, G. Campylobacter outbreak due to chicken consumption at an australian capital territory restaurant. CDI 2006, 30, 373–377.
[23]  Gillespie, I. Population-attributable risk estimates for Campylobacter infection, Australia. Emerg. Infect. Dis. 2009, 15, 850–851, doi:10.3201/eid1505.081553.
[24]  Meinersmann, R.J.; Phillips, R.W.; Hiett, K.L.; Fedorka-Cray, P. Differentiation of Campylobacter populations as demonstrated by flagellin short variable region sequences. Appl. Environ. Microbiol. 2005, 71, 6368–6374, doi:10.1128/AEM.71.10.6368-6374.2005.
[25]  Stern, N.J.; Fedorka-Cray, P.; Bailey, J.S.; Cox, N.A.; Craven, S.E.; Hiett, K.L.; Musgrove, M.T.; Ladley, S.; Cosby, D.; Mead, G.C. Distribution of Campylobacter spp. In selected U.S. Poultry production and processing operations. J. Food Prot. 2001, 64, 1705–1710.
[26]  European Food Safety Authority. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the eu, 2008—Part A: Campylobacter and Salmonella prevalence estimates. EFSA J. 2010, 8, 1503, doi:10.2903/j.efsa.2010.1503.
[27]  Shanker, S.; Lee, A.; Sorrell, T.C. Horizontal transmission of Campylobacter jejuni amongst broiler chicks: Experimental studies. Epidemiol. Infect. 1990, 104, 101–110, doi:10.1017/S0950268800054571.
[28]  Pearson, A.D.; Greenwood, M.H.; Feltham, R.K.A.; Healing, T.D.; Donaldson, J.; Jones, D.M.; Colwell, R.R. Microbial ecology of Campylobacter jejuni in a united kingdom chicken supply chain: Intermittent common source, vertical transmission, and amplification by flock propagation. Appl. Environ. Microbiol. 1996, 62, 4614–4620.
[29]  Nichols, G.L. Fly transmission of Campylobacter. Emerg. Infect. Dis. 2005, 11, 361–364, doi:10.3201/eid1103.040460.
[30]  Templeton, J.M.; Jong, A.J.D.; Blackall, P.J.; Miflin, J.K. Survival of Campylobacter spp. in darkling beetles (Alphitobius diaperinus) and their larvae in australia. Appl. Environ. Microbiol. 2006, 72, 7909–7911, doi:10.1128/AEM.01471-06.
[31]  Keener, K.M.; Bashor, M.P.; Curtis, P.A.; Sheldon, B.W.; Kathariou, S. Comprehensive review of Campylobacter and poultry processing. Compr. Rev. Food Sci. Food Saf. 2004, 4, 105–116.
[32]  Peyrat, M.B.; Soumet, C.; Maris, P.; Sanders, P. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: Analysis of a potential source of carcass contamination. Int. J. Food Microbiol. 2008, 124, 188–194, doi:10.1016/j.ijfoodmicro.2008.03.030.
[33]  Luber, P.; Brynestad, S.; Topsch, D.; Scherer, K.; Bartelt, E. Quantification of Campylobacter species cross-contamination during handling of contaminated fresh chicken parts in kitchens. Appl. Environ. Microbiol. 2006, 72, 66–70, doi:10.1128/AEM.72.1.66-70.2006.
[34]  Vereen, E., Jr.; Lowrance, R.R.; Cole, D.J.; Lipp, E.K. Distribution and ecology of Campylobacters in coastal plain streams (Georgia, United States of America). Appl. Environ. Microbiol. 2007, 73, 1395–1403, doi:10.1128/AEM.01621-06.
[35]  Inglis, G.D.; Kalischuk, L.D.; Busz, H.W. Chronic shedding of Campylobacter species in beef cattle. J. Appl. Microbiol. 2004, 97, 410–420, doi:10.1111/j.1365-2672.2004.02313.x.
[36]  Verhoeff-Bakkenes, L.; Jansen, H.A.P.M.; in ’t Veld, P.H.; Beumer, R.R.; Zwietering, M.H.; van Leusden, F.M. Consumption of raw vegetables and fruits: A risk factor for Campylobacter infections. Int. J. Food Microbiol. 2011, 144, 406–412, doi:10.1016/j.ijfoodmicro.2010.10.027.
[37]  Rapp, D.; Ross, C.M.; Pleydell, E.J.; Muirhead, R.W. Differences in the fecal concentrations and genetic diversities of Campylobacter jejuni populations among individual cows in two dairy herds. Appl. Environ. Microbiol. 2012, 78, 7564–7571, doi:10.1128/AEM.01783-12.
[38]  Taylor, P.R.; Weinstein, W.M.; Bryner, J.H. Campylobacter fetus infection in human subjects: Association with raw milk. Am. J. Med. 1979, 66, 779–783, doi:10.1016/0002-9343(79)91116-1.
[39]  Evans, M.R. A milk-borne Campylobacter outbreak following an educational farm visit. Epidemiol. Infect. 1996, 117, 457, doi:10.1017/S0950268800059112.
[40]  Van den Brandhof, W.; Wagenaar, J.A.; van den Kerkhof, H. An outbreak of campylobacteriosis after drinking unpasteurized milk, 2002, the Netherlands. Int. J. Med. Microbiol. 2003, 293, 548–549.
[41]  Teunis, P.; van den Brandhof, W.; Nauta, M.; Wagenaar, J.; van den Kerkhof, H.; van Pelt, W. A reconsideration of the Campylobacter dose-response relation. Epidemiol. Infect. 2005, 133, 583, doi:10.1017/S0950268805003912.
[42]  Taylor, E.V.; Herman, K.M.; Ailes, E.C.; Fitzgerald, C.; Yoder, J.S.; Mahon, B.E.; Tauxe, R.V. Common source outbreaks of Campylobacter infection in the USA, 1997–2008. Epidemiol. Infect. 2013, 141, 987–996, doi:10.1017/S0950268812001744.
[43]  Fitzgerald, C.; Stanley, K.; Andrew, S.; Jones, K. Use of pulsed-field gel electrophoresis and flagellin gene typing in identifying clonal groups of Campylobacter jejuni and Campylobacter coli in farm and clinical environments. Appl. Environ. Microbiol. 2001, 67, 1429–1436, doi:10.1128/AEM.67.4.1429-1436.2001.
[44]  Schouls, L.M.; Reulen, S.; Duim, B.; Wagenaar, J.A.; Willems, R.J.L.; Dingle, K.E.; Colles, F.M.; Embden, J.D.A.V. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: Strain diversity, host range, and recombination. J. Clin. Microbiol. 2003, 41, 15–26, doi:10.1128/JCM.41.1.15-26.2003.
[45]  Itoh, T.; Saito, K.; Maruyama, T.; Sakai, S.; Ohashi, M.; Oka, A. An outbreak of acute enteritis due to Campylobacter fetus subspecies jejuni at a nursery school of tokyo. Microb. Immunol. 1980, 24, 371–379.
[46]  Doorduyn, Y.; van Den Brandhof, W.E.; van Duynhoven, Y.T.H.P.; Breukink, B.J.; Wagenaar, J.A.; van Pelt, W. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in the Netherlands: A case-control study. Epidemiol. Infect. 2010, 138, 1391–1404, doi:10.1017/S095026881000052X.
[47]  Miles, S.; Braxton, D.S.; Frewer, L.J. Public perceptions about microbiological hazards in food. Br. Food J. 1999, 101, 744–753, doi:10.1108/00070709910293670.
[48]  Worsfold, D.; Griffith, C.J. Food safety behaviour in the home. Br. Food J. 1997, 99, 97–104, doi:10.1108/00070709710168932.
[49]  Todd, E.C.D. Microbiological safety standards and public health goals to reduce foodborne disease. Meat Sci. 2004, 66, 33–43, doi:10.1016/S0309-1740(03)00023-8.
[50]  Scott, E. Food safety and foodborne disease in 21st century homes. Can. J. Infect. Dis. 2003, 14, 277–280.
[51]  Lenz, J.; Joffe, D.; Kauffman, M.; Zhang, Y.; LeJeune, J. Perceptions, practices, and consequences associated with foodborne pathogens and the feeding of raw meat to dogs. CVJ 2009, 50, 637–643.
[52]  Chaban, B.; Ngeleka, M.; Hill, J. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol. 2010, 10, 73, doi:10.1186/1471-2180-10-73.
[53]  Baker, J.; Barton, M.; Lanser, J. Campylobacter species in cats and dogs in south Australia. Aust. Vet. J. 1999, 77, 662–666, doi:10.1111/j.1751-0813.1999.tb13159.x.
[54]  Kothary, M.H.; Babu, U.S. Infective dose of foodborne pathogens in volunteers: A review. J. Food Saf. 2001, 21, 49–68, doi:10.1111/j.1745-4565.2001.tb00307.x.
[55]  Gras, L.M.; Smid, J.H.; Wagenaar, J.A.; Koene, M.G.J.; Havelaar, A.H.; Friesema, I.H.M.; French, N.P.; Flemming, C.; Galson, J.D.; Graziani, C.; et al. Increased risk for Campylobacter jejuni and C. Coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. Epidemiol. Infect. 2013, 141(12), 2526–2535, doi:10.1017/S0950268813000356.
[56]  Waldenstrom, J.; Axelsson-Olsson, D.; Olsen, B.; Hasselquist, D.; Griekspoor, P.; Jansson, L.; Teneberg, S.; Svensson, L.; Ellstrom, P. Campylobacter jejuni colonization in wild birds: Results from an infection experiment. PLoS One 2010, 5, 1–8.
[57]  Tulve, N.S.; SUGGS, J.C.; McCURDY, T.; HUBAL, E.A.C.; MOYA, J. Frequency of mouthing behavior in young children. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 259–264, doi:10.1038/sj.jea.7500225.
[58]  Wang, C.-M.; Shia, W.-Y.; Jhou, Y.-J.; Shyu, C.-L. Occurrence and molecular characterization of reptilian Campylobacter fetus strains isolated in Taiwan. Vet. Microbiol. 2013, 164, 67–76, doi:10.1016/j.vetmic.2013.01.008.
[59]  Stampi, S.; de Luca, G.; Varoli, O.; Zanetti, F. Occurrence, removal and seasonal variation of thermophilic Campylobacters and Arcobacter in sewage sludge. Zentralblatt für Hygiene und Umweltmedizin 1999, 202, 19–27.
[60]  Stampi, S.; Varol, O.; Zanetti, F.; Luca, G.D. Arcobacter cryaerophilus and thermophilic Campylobacters in a sewage treatment plant in Italy: Two secondary treatments compared. Epidemiol. Infect. 1993, 110, 633–639, doi:10.1017/S0950268800051050.
[61]  Wéry, N.; Lhoutellier, C.; Ducray, F.; Delgenès, J.-P.; Godon, J.-J. Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res. 2008, 42, 53–62, doi:10.1016/j.watres.2007.06.048.
[62]  Sinton, L.W.; Braithwaite, R.R.; Hall, C.H.; Mackenzie, M.L. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microbiol. 2007, 73, 7917–7925, doi:10.1128/AEM.01620-07.
[63]  Nicholson, F.A.; Groves, S.J.; Chambers, B.J. Pathogen survival during livestock manure storage and following land application. Bioresour. Technol. 2005, 96, 135–143, doi:10.1016/j.biortech.2004.02.030.
[64]  Koenraad, P.M.F.J.; Hazeleger, W.C.; van der Laan, T.; Beumer, R.R.; Rombouts, F.M. Survey of Campylobacter spp. in sewage plants in the Netherlands. Food Microbiol. 1994, 11, 65–73, doi:10.1006/fmic.1994.1009.
[65]  Blaser, M.J.; Hardesty, H.L.; Powers, B.; Wang, W.L. Survival of Campylobacter fetus subsp. jejuni in biological milieus. J. Clin. Microbiol. 1980, 11, 309–313.
[66]  Inglis, G.D.; Kalischuk, L.D. Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR. Appl. Environ. Microbiol. 2004, 70, 2296–2306, doi:10.1128/AEM.70.4.2296-2306.2004.
[67]  Nocker, A.; Sossa, P.; Burr, M.; Camper, A. Use of propidium monoazide for live-dead distinction in microbial ecology. Appl. Environ. Microbiol. 2007, 73, 5111–5117, doi:10.1128/AEM.02987-06.
[68]  Ahmed, A.U.; Sorensen, D.L. Kinetics of pathogen destruction during storage of dewatered biosolids. Water Environ. Res. 1995, 67, 143–150, doi:10.2175/106143095X131286.
[69]  Horan, N.J.; Fletcher, L.; Betmal, S.M.; Wilks, S.A.; Keevil, C.W. Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion. Water Res. 2004, 38, 1113–1120, doi:10.1016/j.watres.2003.12.004.
[70]  Kearney, T.E.; Larkin, M.J.; Levett, P.N. The effect of slurry storage and anaerobic digestion on survival of pathogenic bacteria. J. Appl. Microbiol. 1993, 74, 86–93, doi:10.1111/j.1365-2672.1993.tb03000.x.
[71]  Arimi, S.M.; Fricker, C.R.; Park, R.W.A. Occurrence of “thermophilic” campylobacters in sewage and their removal by treatment processes. Epidemiol. Infect. 1988, 101, 279–286, doi:10.1017/S0950268800054194.
[72]  Koenraad, P.M.F.J.; Ayling, R.; Hazeleger, W.C.; Romboutst, F.M.; Newell, D.G. The speciation and subtyping of Campylobacter isolates from sewage plants and waste water from a connected poultry abattoir using molecular techniques. Epidemniol. Infect. 1995, 115, 485–494, doi:10.1017/S0950268800058647.
[73]  Waage, A.S.; Vardund, T.; Lund, V.; Kapperud, G. Detection of small numbers of Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food samples by a seminested pcr assay. Appl. Environ. Microbiol. 1999, 65, 1636–1643.
[74]  Rechenburg, A.; Kistemann, T. Sewage effluent as a source of Campylobacter sp. In a surface water catchment. Int. J. Environ. Health Res. 2009, 19, 239–249, doi:10.1080/09603120802460376.
[75]  Lauria-Filgueiras, A.; Hofer, E. Diversity of Campylobacter isolates from three activated sludge systems. Mem Inst Oswaldo Cruz Rio de Janeiro 1998, 93, 295–298, doi:10.1590/S0074-02761998000300003.
[76]  Smith, C.J.; Hopmans, P.; Cook, F.J. Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environ. Pollut. 1996, 94, 317–323, doi:10.1016/S0269-7491(96)00089-9.
[77]  Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322, doi:10.1016/j.agee.2005.02.025.
[78]  Betaie, M.; Jones, B.K. Thermophilic Campylobacters in two sewage treatment plants in Libya. Lett. Appl. Microbiol. 1990, 11, 93–95, doi:10.1111/j.1472-765X.1990.tb01284.x.
[79]  Murphy, C.; Carroll, C.; Jordan, K.N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 2006, 100, 623–632, doi:10.1111/j.1365-2672.2006.02903.x.
[80]  Buswell, C.M. Extended survival and persistence of Campylobacter spp. In water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl. Environ. Microbiol. 1998, 64, 733–741.
[81]  Rollins, D.M.; Colwell, R.R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 1986, 52, 531–538.
[82]  Cools, I.; Uyttendaele, M.; Caro, C.; D’Haese, E.; Nelis, H.J.; Debevere, J. Survival of Campylobacter jejuni strains of different origin in drinking water. J. Appl. Microbiol. 2003, 94, 886–892, doi:10.1046/j.1365-2672.2003.01916.x.
[83]  Daczkowska-Kozon, E.; Brzostek-Nowakowska, J. Campylobacter spp. In waters of three main western pomerania water bodies. Int. J. Hyg. Environ. Health 2001, 203, 435–443, doi:10.1078/1438-4639-00048.
[84]  Horman, A.; Rimhanen-Finne, R.; Maunula, L.; Bonsdorff, C.-H.V.; Torvela, N.; Heikinheimo, A.; Hanninen, M.-L. Campylobacter spp., Giardia spp., Cryptosporidium spp., Noroviruses, and indicator organisms in surface water in southwestern Finland, 2000–2001. Appl. Environ. Microbiol. 2004, 70, 87–95, doi:10.1128/AEM.70.1.87-95.2004.
[85]  Carter, A.M.; Pacha, R.E.; Clark, G.W.; Williams, E.A. Seasonal occurrence of Campylobacter spp. In surface waters and their correlation with standard indicator bacteria. Appl. Environ. Microbiol. 1987, 53, 523–526.
[86]  Obiri-Danso, K.; Jones, K. The effect of a new sewage treatment plant on faecal indicator numbers, Campylobacters and bathing water compliance in morecambe bay. J. Appl. Microbiol. 1999, 83, 603–614, doi:10.1046/j.1365-2672.1999.00703.x.
[87]  Sari Kovats, R. Climate variability and Campylobacter infection: An international study. Int. J. Biometeorol. 2005, 49, 207, doi:10.1007/s00484-004-0241-3.
[88]  Davies-Colley, R.J.; Bell, R.G.; Donnison, A.M. Sunlight inactivation of Enterococci and fecal coliforms in sewage effluent diluted in seawater. Appl. Environ. Microbiol. 1994, 60, 2049–2058.
[89]  Sinton, L.W.; Davies-Colley, R.J.; Bell, R.G. Inactivation of Enterococci and fecal coliforms from sewage and meatworks effluents in seawater chambers. Appl. Environ. Microbiol. 1994, 60, 2040–2048.
[90]  Boyle, M.; Sichel, C.; Fernández-Ib?ez, P.; Arias-Quiroz, G.B.; Iriarte-Pu?a, M.; Mercado, A.; Ubomba-Jaswa, E.; McGuigan, K.G. Bactericidal effect of solar water disinfection under real sunlight conditions. Appl. Environ. Microbiol. 2008, 74, 2997–3001, doi:10.1128/AEM.02415-07.
[91]  Sinton, L.W.; Hall, C.H.; Lynch, P.A.; Davies-Colley, R.J. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl. Environ. Microbiol. 2002, 68, 1122–1131, doi:10.1128/AEM.68.3.1122-1131.2002.
[92]  Korhonen, L.K.; Martikalnon, P.J. Survival of Escherichia coli and Campylobacter jejuni in untreated and filtered lake water. J. Appl. Microbiol. 1991, 71, 379–382, doi:10.1111/j.1365-2672.1991.tb03804.x.
[93]  Stanley, K.; Cunningham, R.; Jones, K. Isolation of Campylobacter jejuni from groundwater. J. Appl. Microbiol. 1998, 85, 187–191, doi:10.1046/j.1365-2672.1998.00494.x.
[94]  Pearson, A.D.; Greenwood, M.; Healing, T.D.; Rollins, D.; Shahamat, M.; Donaldson, J.; Colwell, R.R. Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl. Environ. Microbiol. 1993, 59, 987–996.
[95]  Giessen, A.W.V.D.; Bloemberg, B.P.M.; Ritmeester, W.S.; Tilburg, J.J.H.C. Epidemiological study on risk factors and risk reducing measures for Campylobacter infections in Dutch broiler flocks. Epidemiol. Infect. 1996, 117, 245–250, doi:10.1017/S0950268800001412.
[96]  Moore, J.; Caldwell, P.; Millar, B. Molecular detection of Campylobacter spp. in drinking, recreational and environmental water supplies. Int. J. Hyg. Environ. Health 2001, 204, 185–189, doi:10.1078/1438-4639-00096.
[97]  Kuusi, M.; Klemets, P.; Miettinen, I.; Laaksonen, I.; Sarkkinen, H.; Ha¨nninen, M.L.; Rautelin, H.; Kela, E.; Nuorti, J.P. An outbreak of gastroenteritis from a non-chlorinated community water supply. J. Epidemiol. Community Health 2004, 58, 273–277, doi:10.1136/jech.2003.009928.
[98]  Smith, A.; Reacher, M.; Smerdon, W.; Adak, G.K.; Nichols, G.; Chalmers, R.M. Outbreaks of waterborne infectious intestinal disease in England and Wales, 1992–2003. Epidemiol. Infect. 2006, 134, 1141–1149, doi:10.1017/S0950268806006406.
[99]  Ahmed, W.; Huygens, F.; Goonetilleke, A.; Gardner, T. Real-time PCR detection of pathogenic microorganisms in roof-harvested rainwater in southeast Queensland, Australia. J. Appl. Environ. Microbiol. 2008, 74, 5490–5496, doi:10.1128/AEM.00331-08.
[100]  Said, B.; Wright, F.; Nichols, G.L.; Reacher, M.; Rutter, M. Outbreaks of infectious disease associated with private drinking water supplies in England and Wales 1970–2000. Epidemiol. Infect. 2003, 130, 469–479.
[101]  Daoud, A.K.; Swaileh, K.M.; Hussein, R.M.; Matani, M. Quality assessment of roof-harvested rainwater in the west bank, palestinian authority. J. Water Health 2011, 9, 525–533, doi:10.2166/wh.2011.148.
[102]  Savill, M.G.; Hudson, J.A.; Ball, A.; Klena, J.D.; Scholes, P.; Whyte, R.J.; McCormick, R.E.; Jankovic, D. Enumeration of Campylobacter in New Zealand recreational and drinking waters. Appl. Microbiol. 2001, 91, 38–46, doi:10.1046/j.1365-2672.2001.01337.x.
[103]  Merritt, A.; Miles, R.; Bates, J. An outbreak of Campylobacter enteritis on an island resort, north Queensland. CDI 1999, 23, 215–218.
[104]  Blaser, M.J.; Smith, P.F.; Wang, W.L.; Hoff, J.C. Inactivation of Campylobacter jejuni by chlorine and monochloramine. Appl. Environ. Microbiol. 1986, 51, 307–311.
[105]  Snelling, W.J.; McKenna, J.P.; Lecky, D.M.; Dooley, J.S.G. Survival of Campylobacter jejuni in waterborne protozoa. Appl. Environ. Microbiol. 2005, 71, 5560–5571, doi:10.1128/AEM.71.9.5560-5571.2005.
[106]  Brown, M.R.W.; Barker, J. Unexplored reservoirs of pathogenic bacteria: Protozoa and biofilms. Trends Microbiol. 1999, 7, 46–50, doi:10.1016/S0966-842X(98)01425-5.
[107]  Lawson, A.J.; Linton, D.; Stanley, J.; Owen, R.J. Polymerase chain reaction detection and speciation of Campylobacter upsaliensis and C. Helveticus in human faeces and comparison with culture techniques. J. Appl. Microbiol. 1997, 83, 375–380.
[108]  Kulkarni, S.P.; Lever, S.; Logan, J.M.J. Detection of Campylobacter species: A comparison of culture and polymerase chain reaction based methods. J. Clin. Pathol. 2002, 55, 749–753, doi:10.1136/jcp.55.10.749.
[109]  Maher, M.; Finnegan, C.; Collins, E.; Ward, B.; Carroll, C.; Cormican, M. Evaluation of culture methods and a DNA probe-based pcr assay for detection of campylobacter species in clinical specimens of feces. J. Clin. Microbiol. 2003, 41, 2980–2986, doi:10.1128/JCM.41.7.2980-2986.2003.
[110]  Baserisalehi, M.; Bahador, N.; Kapadnis, B.P. A novel method for isolation of Campylobacter spp. From environmental samples, involving sample processing, and blood- and antibiotic-free medium. J. Appl. Microbiol. 2004, 97, 853–860, doi:10.1111/j.1365-2672.2004.02375.x.
[111]  Novitsky, J.A. Degradation of dead microbial biomass in a marine sediment. Appl. Environ. Microbiol. 1986, 52, 504–509.
[112]  Rudi, K.; Moen, B.; Dromtorp, S.M.; Holck, A.L. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 2005, 71, 1018–1024, doi:10.1128/AEM.71.2.1018-1024.2005.
[113]  Pan, Y.; Breidt, F. Enumeration of viable Listeria monocytogenes cells by real-time PCR with Propidium monoazide and Ethidium monoazide in the presence of dead cells. Appl. Environ. Microbiol. 2007, 73, 8028–8031, doi:10.1128/AEM.01198-07.
[114]  K?renlampi, R.; Rautelin, H.; Sch?nberg-Norio, D.; Paulin, L.; H?nninen, M.-L. Longitudinal study of finnish Campylobacter jejuni and C. Coli isolates from humans, using multilocus sequence typing, including comparison with epidemiological data and isolates from poultry and cattle. Appl. Environ. Microbiol. 2007, 73, 148–155, doi:10.1128/AEM.01488-06.
[115]  Lévesque, S.; Frost, E.; Arbeit, R.D.; Michaud, S. Multilocus sequence typing of Campylobacter jejuni isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J. Clin. Microbiol. 2008, 46, 3404–3411, doi:10.1128/JCM.00042-08.
[116]  Sheppard, S.K.; Dallas, J.F.; MacRae, M.; McCarthy, N.D.; Sproston, E.L.; Gormley, F.J.; Strachan, N.J.C.; Ogden, I.D.; Maiden, M.C.J.; Forbes, K.J. Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int. J. Food Microbiol. 2009, 134, 96–103, doi:10.1016/j.ijfoodmicro.2009.02.010.
[117]  Taboada, E.N.; Clark, C.G.; Sproston, E.L.; Carrillo, C.D. Current methods for molecular typing of Campylobacter species. J. Microbiol. Methods 2013, 95, 24–31, doi:10.1016/j.mimet.2013.07.007.
[118]  Hijnen, W.A.M.; Beerendonk, E.F.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 2006, 40, 3–22, doi:10.1016/j.watres.2005.10.030.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133