全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

DOI: 10.3390/ijerph10115830

Keywords: lead, copper, cadmium, models, soils, sorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb), copper (Cu) and Cadmium (Cd) during their transfer in a calcareous soil of Port-au-Prince (Haiti). Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity ( q max), the order affinity of Pb, Cu and Cd for the studied soil was Pb 2+ > Cu 2+ > Cd 2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their q max. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

References

[1]  Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18, doi:10.1016/j.jcis.2004.04.005.
[2]  Siegel, F.R. Environmental Geochemistry of Potentially Toxic Heavy Metals; Springer: Berlin, Germany, 2002.
[3]  Usman, A.R.A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 2008, 144, 334–343, doi:10.1016/j.geoderma.2007.12.004.
[4]  Qin, F.; Wen, B.; Shan, X.-Q.; Xie, Y.-N.; Liu, T.; Zhang, S.-Z.; Khan, S.U. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ. Pollut. 2006, 144, 669–680, doi:10.1016/j.envpol.2005.12.036.
[5]  Antoniadis, V.; Tsadilas, C.D.; Ashworth, D.J. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil. Chemosphere 2007, 68, 489–494, doi:10.1016/j.chemosphere.2006.12.062.
[6]  Krishnamurti, G.S.R.; Naidu, R. Solid-solution equilibria of cadmium in soils. Geoderma 2003, 113, 17–30, doi:10.1016/S0016-7061(02)00313-0.
[7]  Adhikari, T.; Singh, M.V. Sorption characteristics of lead and cadmium in some soils of India. Geoderma 2003, 114, 81–92, doi:10.1016/S0016-7061(02)00352-X.
[8]  Appel, C.; Ma, L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. J. Environ. Qual. 2002, 31, 581–589, doi:10.2134/jeq2002.0581.
[9]  Hooda, P.S.; Alloway, B.J. Cadmium and lead sorption behavior of selected English and Indian soils. Geoderma 1998, 84, 121–134, doi:10.1016/S0016-7061(97)00124-9.
[10]  Jalali, M.; Moharrami, S. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma 2007, 140, 156–163, doi:10.1016/j.geoderma.2007.03.016.
[11]  Kuo, S.; Baker, A.S. Sorption of copper, zinc, and cadmium by some acid soils. Soil Sci. Soc. Am. J. 1980, 44, 969–974, doi:10.2136/sssaj1980.03615995004400050019x.
[12]  Martinez, C.E.; McBride, M.B. Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with morphous iron hydroxides. Environ. Sci. Technol. 1998, 32, 743–748, doi:10.1021/es970262+.
[13]  Plassard, F.; Winiarski, T.; Petit-Ramel, M. Retention and distribution of three heavy metals in a carbonated soil: Comparison between batch and unsaturated column studies. J. Contam. Hydrol. 2000, 42, 99–111, doi:10.1016/S0169-7722(99)00101-1.
[14]  Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131, doi:10.1021/es9907764.
[15]  Serrano, S.; Garrido, F.; Campbell, C.G.; Garcia-Gonzalez, M.T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 2005, 124, 91–104, doi:10.1016/j.geoderma.2004.04.002.
[16]  Trivedi, P.; Dyer, J.A.; Sparks, D.L. Lead sorption onto ferrihydrite. 1. A macroscopic and spectroscopic assessment. Environ. Sci. Technol. 2003, 37, 908–914, doi:10.1021/es0257927.
[17]  Ponizovsky, A.A.; Allen, H.E.; Ackerman, A.J. Copper activity in soil solutions of calcareous soils. Environ. Pollut. 2007, 145, 1–6, doi:10.1016/j.envpol.2006.04.010.
[18]  Fontes, M.P.F.; de Matos, A.T.; da Costa, L.M.; Neves, J.C.L. Compititive adsorption of Zn, Cd, Cu and Pb in three highly weathered Brazilian soils. Commun. Soil Sci. Plant Anal. 2000, 31, 2939–2958, doi:10.1080/00103620009370640.
[19]  Assessment of Human Exposures to Lead in Drinking Water. Available online: http://www.bvsde.paho.org/bvsAIDIS/PuertoRico29/ruth.pdf (accessed on 29 October 2013).
[20]  Emmanuel, E.; Angerville, R.; Joseph, O.; Perrodin, Y. Human health risk assessment of lead in drinking water : A case study from Port-au-Prince Haiti. Int. J. Environ. Pollut. 2007, 31, 280–291, doi:10.1504/IJEP.2007.016496.
[21]  Emmanuel, E.; Pierre, M.G.; Perrodin, Y. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: Health risk assessment for drinking water consumers. Environ. Int. 2009, 35, 718–726, doi:10.1016/j.envint.2009.01.011.
[22]  Metson, A.J. Methods of Chemical Analysis for Soil Survey Samples; New Zealand Department of Scientific and Industrial Research, Soil Bureau Bulletin: New Zealand, Wellington, 1956.
[23]  Equilibrium Sorption of Pb(II), Cd(II) and Cu(II) into Soil of Port-au-Prince: Single-Element System Studies. Available online: http://theses.insa-lyon.fr/publication/2010ISAL0122/these.pdf (accessed on 29 October 2013).
[24]  Jang, A.; Lee, S.-W.; Seo, Y.; Kim, K.-W.; Kim, I.S.; Bishop, P.L. Application of mulch for treating metals in urban runoff: Batch and column test. Water Sci. Technol. 2007, 55, 95–103.
[25]  Ho, Y.-S. Citation review of Lagergreen kinetic rate equation on adsorption reaction. Scientometrics 2004, 59, 171–177, doi:10.1023/B:SCIE.0000013305.99473.cf.
[26]  Achak, M.; Hafidi, A.; Ouazzani, N.; Sayadi, S.; Mandi, L. Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies. J. Hazard. Mater. 2009, 166, 117–125, doi:10.1016/j.jhazmat.2008.11.036.
[27]  Banat, F.; Al-Asheh, S.; Al-Makhadmeh, L. Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chem. Eng. Technol. 2004, 27, 80–86, doi:10.1002/ceat.200401868.
[28]  Goud, V.V.; Mohanty, K.; Rao, M.S.; Jayakumar, N.S. Phenol removal fromaqueous solutions using tamarind nut shell activated carbon: Batch and column study. Chem. Engin. Technol. 2005, 28, 814–821, doi:10.1002/ceat.200500013.
[29]  Fifi, U.; Winiarski, T.; Emmanuel, E. Groundwater Vulnerability towards Pollutants from Urban Stormwater in Developing Countries—Study of Heavy Metals Adsorption on a Representative Soil of Port-au-Prince, Haiti. (in French); GRAIE: Lyon, France, 2010.
[30]  Jain, J.S.; Snoeyink, V.L. Adsorption from bisolute systems on active carbon. Water Pollut. Control Federation 1973, 45, 2463–2479.
[31]  Papageorgiou, S.K.; Katsaros, F.K.; Kouvelos, E.P.; Kanellopoulos, N.K. Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J. Hazard. Mater. 2009, 162, 1347–1354, doi:10.1016/j.jhazmat.2008.06.022.
[32]  Cheung, C.W.; Porter, C.F.; McKay, G. Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep. Purif. Technol. 2000, 19, 55–64, doi:10.1016/S1383-5866(99)00073-8.
[33]  Keskinkan, O.; Goksu, M.Z.L.; Basibuyuk, M.; Forster, C.F. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour. Technol. 2004, 92, 197–200, doi:10.1016/j.biortech.2003.07.011.
[34]  Arias, M.; Pérez-Novo, C.; Lopez, E.; Soto, B. Competitive adsorption and desorption of copper and zinc in acids soils. Geoderma 2006, 133, 151–159, doi:10.1016/j.geoderma.2005.07.002.
[35]  Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. ed.; Wiley-Interscience Publication: Hoboken, NJ, USA, 1981.
[36]  Frimmel, F.H.; Huber, L. Influence of humic substances on the aquatic sorption of heavy metals on defined minerals phases. Environ. Int. 1996, 22, 507–517, doi:10.1016/0160-4120(96)00040-2.
[37]  Nagernaik, P.B.; Bhole, A.G.; Natarajan, G.S. Arsenic (II) removal by Adsorption rice husks carbon. Int. J. Environ. Stud. 2002, 5, 1097–1164.
[38]  McKay, G.; Otterburn, M.S.; Sweeney, A.G. The removal of color from effluent using various adsorbents—IV silica: Equilibria and column studies. Water Res. 1980, 14, 21–27, doi:10.1016/0043-1354(80)90038-X.
[39]  Tellan, A.C.; Owalude, S.O. Some Langmuir and Freundlich parameters of adsorption studies of chlorpheniramine maleate. Res. J. Appl. Sci. 2007, 2, 875–878.
[40]  Elliott, H.A.; Liberat, M.R.; Huang, C.P. Competitive adsorption of heavy metals by soils. J. Environ. Qual. 1986, 15, 214–219, doi:10.2134/jeq1986.00472425001500030002x.
[41]  Gomes, P.C.; Fontes, M.P.F.; da Silva, A.G.; de S. Mendon?a, E.; Netto, A.R. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci. Soc. Am. J. 2001, 65, 1115–1121, doi:10.2136/sssaj2001.6541115x.
[42]  Yong, R.N.; Mohamed, A.M.O.; Warkentin, B.P. Principles of Contaminant Transport in Soils; Elsevier: Amsterdam, The Netherlands, 1992.
[43]  Berti, W.R.; Jacobs, L.W. Distribution of trace elements in soil from repeated sewage sludge application. J. Environ. Qual. 1998, 27, 1280–1286, doi:10.2134/jeq1998.00472425002700060002x.
[44]  Morera, M.T.; Echeverría, J.C.; Mazkiarán, C.; Garrido, J.J. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ. Pollut. 2001, 113, 135–144, doi:10.1016/S0269-7491(00)00169-X.
[45]  Mohan, D.; Pittman, C.U., Jr.; Steele, P.H. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. J. Colloid Interface Sci. 2006, 297, 489–504, doi:10.1016/j.jcis.2005.11.023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133