Despite a cold temperate climate and low human population density, the Northern Great Plains has become a persistent hot spot for human West Nile virus (WNV) disease in North America. Understanding the spatial and temporal patterns of WNV can provide insights into the epidemiological and ecological factors that influence disease emergence and persistence. We analyzed the 1,962 cases of human WNV disease that occurred in South Dakota from 2002–2012 to identify the geographic distribution, seasonal cycles, and interannual variability of disease risk. The geographic and seasonal patterns of WNV have changed since the invasion and initial epidemic in 2002–2003, with cases shifting toward the eastern portion of South Dakota and occurring earlier in the transmission season in more recent years. WNV cases were temporally autocorrelated at lags of up to six weeks and early season cumulative case numbers were correlated with seasonal totals, indicating the possibility of using these data for short-term early detection of outbreaks. Epidemiological data are likely to be most effective for early warning of WNV virus outbreaks if they are integrated with entomological surveillance and environmental monitoring to leverage the strengths and minimize the weaknesses of each information source.
References
[1]
Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Wildlife ecology—Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 2000, 287, 443–449, doi:10.1126/science.287.5452.443.
[2]
Cleaveland, S.; Laurenson, M.K.; Taylor, L.H. Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Philos. Trans. R. Soc. Lond. Series B Biol. Sci. 2001, 356, 991–999, doi:10.1098/rstb.2001.0889.
[3]
Hayes, E.B.; Komar, N.; Nasci, R.S.; Montgomery, S.P.; O’Leary, D.R.; Campbell, G.L. Epidemiology and transmission dynamics of West Nile Virus disease. Emerg. Infect. Dis. 2005, 11, 1167–1173, doi:10.3201/eid1108.050289a.
[4]
Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile virus: Review of the literature. JAMA 2013, 310, 308–315.
[5]
Rezaeian, M.; Dunn, G.; St Leger, S.; Appleby, L. Geographical epidemiology, spatial analysis and geographical information systems: A multidisciplinary glossary. J. Epidemiol. Commun. Health 2007, 61, 98–102, doi:10.1136/jech.2005.043117.
[6]
Waller, L.A.; Gotway, C.A. Applied Spatial Statistics for Public Health Data; John Wiley & Sons: Hoboken, NJ, USA, 2004.
[7]
Zeger, S.L.; Irizarry, R.A.; Peng, R.D. On time series analysis of public health and biomedical data. Annu. Rev. Public Health 2004, 27, 57–69, doi:10.1146/annurev.publhealth.26.021304.144517.
[8]
Hafen, R.P.; Anderson, D.E.; Cleveland, W.S.; Maciejewski, R.; Ebert, D.S.; Abusalah, A.; Yakout, M.; Ouzzani, M.; Grannis, S.J. Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts. BMC Med. Inform. Decis. Mak. 2009, 9, doi:10.1186/1472-6947-9-21.
[9]
Hashimoto, S.; Murakami, Y.; Taniguchi, K.; Nagai, M. Detection of epidemics in their early stage through infectious disease surveillance. Int. J. Epidemiol. 2000, 29, 905–910, doi:10.1093/ije/29.5.905.
[10]
Bolling, B.G.; Barker, C.M.; Moore, C.G.; Pape, W.J.; Eisen, L. Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West Nile virus in relation to human disease cases in northeastern Colorado. J. Med. Entomol. 2009, 46, 1519–1531, doi:10.1603/033.046.0641.
[11]
Mostashari, F.; Kulldorff, M.; Hartman, J.J.; Miller, J.R.; Kulasekera, V. Dead bird clusters as an early warning system for West Nile virus activity. Emerg. Infect. Dis. 2003, 9, 641–646, doi:10.3201/eid0906.020794.
[12]
Ruiz, M.O.; Chaves, L.F.; Hamer, G.L.; Sun, T.; Brown, W.M.; Walker, E.D.; Haramis, L.; Goldberg, T.L.; Kitron, U.D. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit. Vectors 2010, 3, doi:10.1186/1756-3305-3-19.
[13]
Lindsey, N.P.; Staples, J.E.; Lehman, J.A.; Fischer, M. Surveillance for human West Nile virus disease—United States, 1999–2008. Morb. Mortal. Wkly Rep. 2010, 59, 1–17.
[14]
Wimberly, M.C.; Hildreth, M.B.; Boyte, S.P.; Lindquist, E.; Kightlinger, L. Ecological niche of the 2003 West Nile virus epidemic in the northern Great Plains of the United States. PLoS One 2008, 3, doi:10.1371/journal.pone.0003744.
[15]
Chuang, T.-W.; Hildreth, M.B.; Vanroekel, D.L.; Wimberly, M.C. Weather and land cover influences on mosquito populations in Sioux Falls, South Dakota. J. Med. Entomol. 2011, 48, 669–679, doi:10.1603/ME10246.
[16]
Chuang, T.W.; Hockett, C.W.; Kightlinger, L.; Wimberly, M.C. Landscape-level spatial patterns of West Nile virus risk in the northern Great Plains. Am. J. Trop. Med. Hyg. 2012, 86, 724–731, doi:10.4269/ajtmh.2012.11-0515.
[17]
Chuang, T.W.; Henebry, G.M.; Kimball, J.S.; Vanroekel, D.L.; Hildreth, M.B.; Wimberly, M.C. Satellite microwave remote sensing for environmental modeling of mosquito population dynamics. Remote Sens. Environ. 2012, 125, 147–156, doi:10.1016/j.rse.2012.07.018.
[18]
Chuang, T.W.; Wimberly, M.C. Remote sensing of climatic anomalies and West Nile virus incidence in the northern Great Plains of the United States. PLoS One 2012, 7, doi:10.1371/journal.pone.0046882.
[19]
Grubesic, T.; Matisziw, T. On the use of ZIP codes and ZIP code tabulation areas (ZCTAs) for the spatial analysis of epidemiological data. Int. J. Health Geogr. 2006, 5, 58, doi:10.1186/1476-072X-5-58.
[20]
Eisen, L.; Eisen, R.J. Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases. Emerg. Infect. Dis. 2007, 13, 1816–1820, doi:10.3201/eid1312.070211.
[21]
Wey, C.L.; Griesse, J.; Kightlinger, L.; Wimberly, M.C. Geographic variability in geocoding success for West Nile virus cases in South Dakota. Health Place 2009, 15, 1108–1114, doi:10.1016/j.healthplace.2009.06.001.
[22]
Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73.
[23]
Kilpatrick, A.M.; LaDeau, S.L.; Marra, P.P. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk 2007, 124, 1121–1136, doi:10.1642/0004-8038(2007)124[1121:EOWNVT]2.0.CO;2.
[24]
LaDeau, S.L.; Kilpatrick, A.M.; Marra, P.P. West Nile virus emergence and large-scale declines of North American bird populations. Nature 2007, 447, 710–713, doi:10.1038/nature05829.
[25]
Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139, doi:10.1073/pnas.1215404110.
[26]
Johnston, C.A. Wetland losses due to row crop expansion in the Dakota Prairie Pothole Region. Wetlands 2013, 33, 175–182, doi:10.1007/s13157-012-0365-x.
[27]
Sugumaran, R.; Larson, S.R.; DeGroote, J.P. Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States. Int. J. Health Geogr. 2009, 8, doi:10.1186/1476-072X-8-43.
[28]
Ruiz, M.O.; Walker, E.D.; Foster, E.S.; Haramis, L.D.; Kitron, U.D. Association of West Nile virus illness and urban landscapes in Chicago and Detroit. Int. J. Health Geogr. 2007, 6, 10, doi:10.1186/1476-072X-6-10.
[29]
Gibbs, S.E.J.; Wimberly, M.C.; Madden, M.; Masour, J.; Yabsley, M.J.; Stallknecht, D.E. Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002–2004. Vector Borne Zoonotic Dis. 2006, 6, 73–82, doi:10.1089/vbz.2006.6.73.
[30]
Guintran, J.; Delacollette, C.; Trigg, P. Systems for the Early Detection of Malaria Epidemics in Africa: An Analysis of Current Practices and Future Priorities; World Health Organization: Geneva, Switzerland, 2006. WHO/HTM/MAL/2006.1115.
[31]
Midekisa, A.; Senay, G.; Henebry, G.M.; Semuniguse, P.; Wimberly, M.C. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar. J. 2012, 11, doi:10.1186/1475-2875-11-165.
[32]
Winters, A.M.; Bolling, B.G.; Beaty, B.J.; Blair, C.D.; Eisen, R.J.; Meyer, A.M.; Pape, W.J.; Moore, C.G.; Eisen, L. Combining mosquito vector and human disease data for improved assessment of spatial West Nile virus disease risk. Am. J. Trop. Med. Hyg. 2008, 78, 654–665.
[33]
Wimberly, M.C.; Chuang, T.-W.; Henebry, G.M.; Liu, Y.; Midekisa, A.; Semuniguse, P.; Senay, G. A Computer System for Forecasting Malaria Epidemic Risk Using Remotely-Sensed Environmental Data. In Proceedings of the International Congress on Environmental Modelling and Software. Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty, Leipzig, Germany, 1–5 July 2012; Seppelt, R., Voinov, A.A., Lange, S., Bankamp, D., Eds.; International Environmental Modelling and Software Society (iEMSs): Leipzig, Germany, 2012.
[34]
Barker, C.M.; Reisen, W.K.; Kramer, V.L. California state mosquito-borne virus surveillance and response plan: A retrospective evaluation using conditional simulations. Am. J. Trop. Med. Hyg. 2003, 68, 508–518.
[35]
Kwan, J.L.; Park, B.K.; Carpenter, T.E.; Ngo, V.; Civen, R.; Reisen, W.K. Comparison of enzootic risk measures for predicting West Nile disease, Los Angeles, California, USA, 2004–2010. Emerg. Infect. Dis. 2012, 18, 1298.