全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2014 

Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

DOI: 10.3390/insects5010139

Keywords: Photorhabdus, Bacillus thuringiensis, virulence factors, toxins, neurobiology, Mcf, Tc, Cry

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.

References

[1]  Steinhaus, E.A. Living insecticides. Sci. Am. 1956, 195, 96–106, doi:10.1038/scientificamerican0856-96.
[2]  Lacey, L.A.; Frutos, R.; Kaya, H.K. Insect pathogens as biological control agents: Do they have a future? Biol. Contr. 2001, 21, 230–248, doi:10.1006/bcon.2001.0938.
[3]  Lacey, L.A.; Kaya, H.K. Field Manual of Techniques in Invertebrate Pathology, 2nd ed. ed.; Springer: Dorcrecht, The Netherlands, 2007.
[4]  Kaya, H.K.; Vega, F.E. Insect Pathology, 2nd ed. ed.; Elsevier Academic Press: San Diego, CA, USA, 2012.
[5]  Ishiwata, S.C. One kind of severe flacherie (sotto disease). Dainihon Sans Kaiho 1901, 114, 1–5.
[6]  Berliner, E. Ueber die schlaffsucht der ephestia kuhniella und Bacillus thuringiensis n. sp. Z Angew. Entomology 1915, 2, 21–56. (in German).
[7]  Wilcox, D.R.; Shivakumar, A.G.; Melin, B.E. Genetic Engineering of Bioinsecticides. In Protein Engineering Applications in Science, Medicine, and Industry, 1st ed.; Inouye, M., Sarma, R., Eds.; Academic Press: Orlando, FL, USA, 1986; pp. 395–412.
[8]  Fischhoff, D.A.; Bowdish, K.S.; Perlak, F.J. Insect tolerant transgenic tomato plants. Nat. Biotechnol. 1987, 5, 807–813, doi:10.1038/nbt0887-807.
[9]  Hilder, V.A.; Gatehouse, A.M.; Sheerman, S.E. A novel mechanism of insect resistance engineered into tobacco. Nature 1987, 330, 160–163, doi:10.1038/330160a0.
[10]  Watkins, P.R.; Huesing, J.E.; Margam, V. Insects, Nematodes, and Other Pests. In Plant Biotechnology and Agriculture Prospects for the 21st Century, 1st ed.; Altman, A., Hasegawa, P.M., Eds.; Elsevier: London, UK, 2012; pp. 353–370.
[11]  Gatehouse, J.A. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol. 2008, 146, 881–887, doi:10.1104/pp.107.111096.
[12]  Chattopadhyay, A.; Bhatnagar, N.B.; Bhatnagar, R. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 2004, 30, 33–54, doi:10.1080/10408410490270712.
[13]  Priest, F.G.; Barker, M.; Baillie, L.W. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 2004, 186, 7959–7970, doi:10.1128/JB.186.23.7959-7970.2004.
[14]  Ochman, H.; Lawrence, J.G.; Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405, 299–304, doi:10.1038/35012500.
[15]  Nielsen-LeRoux, C.; Gaudriault, S.; Ramarao, N. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr. Opin. Microbiol. 2012, 15, 220–231, doi:10.1016/j.mib.2012.04.006.
[16]  Shelton, A.M.; Zhao, J.Z.; Roush, R.T. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 2002, 47, 845–881, doi:10.1146/annurev.ento.47.091201.145309.
[17]  H?fte, H.; Whiteley, H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 1989, 53, 242–255.
[18]  Gough, J.M.; Akhurst, R.J.; Ellar, D.J. New isolates of Bacillus thuringiensis for control of livestock ectoparasites. Biol. Contr. 2002, 23, 179–189, doi:10.1006/bcon.2001.1006.
[19]  Chilcott, C.N.; Ellar, D.J. Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J. Gen. Microbiol. 1988, 134, 2551–2558.
[20]  Kreig, A.; Huger, A.M.; Langenbruch, G.A. New results on Bacillus thuringiensis var tenebrionis with special regard to its effect on the colorado beetle (Leptinotarsa decemlineata). Anz Schadlingskunde Pflanzenschutz Umweltschutz 1984, 57, 145–150, doi:10.1007/BF01903233.
[21]  Rose, E.A.; Harris, R.J.; Glare, T.R. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. New Zeal. J. Zool. 1999, 26, 179–190, doi:10.1080/03014223.1999.9518188.
[22]  Wei, J.Z.; Hale, K.; Carta, L.; Plazter, E.; Wong, C.; Fang, S.C.; Aroian, R.V. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 2003, 100, 2760–2765.
[23]  Hui, F.; Scheib, U.; Hu, Y. Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 2012, 51, 9911–9921, doi:10.1021/bi301386q.
[24]  Schnepf, E.; Crickmore, N.; van Rie, J. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806.
[25]  Loeb, M.J.; Martin, P.A.; Hakim, R.S. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect. Physiol. 2001, 47, 599–606, doi:10.1016/S0022-1910(00)00150-5.
[26]  Griego, V.M.; Fanchier, L.J.; Spence, K.D. Scanning electron microscopy of the disruption of tobacco hornworm, Manduca sexta, midgut by Bacillus thuringiensis, endotoxin. J. Invertebr. Pathol. 1980, 35, 186–189, doi:10.1016/0022-2011(80)90182-2.
[27]  Bravo, A.; Jansens, S.; Peferoen, M. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J. Invertebr. Pathol. 1992, 60, 237–246, doi:10.1016/0022-2011(92)90004-N.
[28]  Cerstiaens, A.; Verleyen, P.; van Rie, J. Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar. Appl. Environ. Microb. 2001, 67, 3923–3927, doi:10.1128/AEM.67.9.3923-3927.2001.
[29]  Haider, M.Z.; Ellar, D.J. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxin: Interaction with phospholipid vesicles. Biochim. Biophys. Acta 1989, 978, 216–222, doi:10.1016/0005-2736(89)90118-1.
[30]  Zhang, X.; Candas, M.; Griko, N.B. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 2006, 103, 9897–9902, doi:10.1073/pnas.0604017103.
[31]  Tanaka, S.; Miyamoto, K.; Noda, H. The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for cry toxins from Bacillus thuringiensis. FEBS J. 2013, 280, 1782–1794, doi:10.1111/febs.12200.
[32]  Atsumi, S.; Miyamoto, K.; Yamamoto, K. A single amino acid mutation in an ABC transporter causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA Plus 2012, 109, E1591–E1598, doi:10.1073/pnas.1120698109.
[33]  Gahan, L.J.; Pauchet, Y.; Vogel, H. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010, 6, e1001248.
[34]  Baxter, S.W. Parallel evolution of Bacillus thuringiensis toxin resistance in lepidoptera. Genetics 2011, 189, 675–679, doi:10.1534/genetics.111.130971.
[35]  Arneson, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606, doi:10.1111/j.1574-6976.2008.00112.x.
[36]  Perchat, S.; Buisson, C.; Chaufaux, J. Bacillus cereus produces several nonproteinaceous insecticidal exotoxins. J. Invertebr. Pathol. 2005, 90, 131–133, doi:10.1016/j.jip.2005.08.002.
[37]  Zwick, M.E.; Joseph, S.J.; Didelot, X. Genomic characterization of the Bacillus cereus sensu lato species: Backdrop to the evolution of Bacillus anthracis. Genome Res. 2012, 22, 1512–1524, doi:10.1101/gr.134437.111.
[38]  Singer, S. The Utility of Strains of Morphological Group II Bacillus. In Advances in Applied Microbiology; Academic Press: San Diego, CA, USA, 1996; Volume 42, pp. 219–259.
[39]  Berry, C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 2012, 109, 1–10, doi:10.1016/j.jip.2011.11.008.
[40]  Nishiwaki, H.; Nakashima, K.; Ishida, C. Cloning, functional characterization and mode of action of a novel insecticidal pore-forming toxin, Sphaericolysin, produced by Bacillus sphaericus. Appl. Environ. Microb. 2007, 73, 3404–3411, doi:10.1128/AEM.00021-07.
[41]  Barth, H.; Aktories, K.; Popoff, M. Binary bacterial toxins: Biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 2004, 68, 373–402, doi:10.1128/MMBR.68.3.373-402.2004.
[42]  Nicolas, L.; Charles, J.F.; Debarjac, H. Clostridium bifermentans servovar malaysia; characterization of putative mosquito larvicidal proteins. FEMS Microbiol. Lett. 1993, 113, 23–29, doi:10.1111/j.1574-6968.1993.tb06482.x.
[43]  Tsuge, H.; Nagahama, M.; Nishimura, H. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J. Mol. Biol. 2003, 325, 471–483, doi:10.1016/S0022-2836(02)01247-0.
[44]  Just, I.; Gerhard, R. Large clostridial cytotoxins. Rev. Physiol. Biochem. Pharmacol. 2005, 152, 23–47, doi:10.1007/s10254-004-0033-5.
[45]  Aktories, K.; Schwan, C.; Papatheodorou, P. Bidirectional attack on the actin cytoskeleton. bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 2012, 60, 572–581, doi:10.1016/j.toxicon.2012.04.338.
[46]  Visschedyk, D.D.; Perieteanu, A.A.; Turgeon, Z.J. Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J. Biol. Chem. 2010, 285, 13525–13534, doi:10.1074/jbc.M109.077339.
[47]  Fischer-Le Saux, M.; Viallard, V. Spodoptera littoralis Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subdp. nov., P. temperata sp. nov. and P. asymbiotica sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 1645–1656, doi:10.1099/00207713-49-4-1645.
[48]  Gerrard, J.G.; Joyce, S.A.; Waterfield, N.R. Nematode symbiont for Photorhabdus asymbiotica. Emerg. Infect. Dis. 2006, 12, 1562–1564, doi:10.3201/eid1210.060464.
[49]  Gerrard, J.; Waterfield, N.; Vohra, R. Human infection with Phtotorhabdus asymbiotica: An emerging bacterial human pathogen. Microbes Infect. 2004, 6, 229–237, doi:10.1016/j.micinf.2003.10.018.
[50]  Duchaud, E.; Rusniok, C.; Frangeul, L. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 2003, 21, 1307–1313, doi:10.1038/nbt886.
[51]  Rodou, A.; Ankrah, D.; Stathopoulos, C. Toxins and secretion systems of Photorhabdus luminescens. Toxins 2010, 2, 1250–1264, doi:10.3390/toxins2061250.
[52]  Daborn, P.J.; Waterfield, N.; Silva, C.P. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escheria coli to persist within and kill Insects. Proc. Natl. Acad. Sci. USA 2002, 99, 10742–10747.
[53]  Waterfield, N.; Hares, M.; Yang, G. Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell. Microbiol. 2005, 7, 373–382, doi:10.1111/j.1462-5822.2004.00467.x.
[54]  Waterfield, N.; Kamita, S.G.; Hammock, B.D. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol. Lett. 2005, 245, 47–52, doi:10.1016/j.femsle.2005.02.018.
[55]  Blackburn, M.B.; Farrar, R.R.; Novak, N.G. Remarkable susceptibility to the diamondback moth (Plutella xylostella) to ingestion of Pir toxins from Photorhabdus luminescens. Entomol. Exp. Appl. 2006, 121, 31–37, doi:10.1111/j.1570-8703.2006.00457.x.
[56]  Ffrench-Constant, R.H.; Dowling, A.; Waterfield, N. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 2007, 49, 436–451, doi:10.1016/j.toxicon.2006.11.019.
[57]  Crosland, R.; Fitch, R.; Hines, H. Characterization of beta-leptinotarsin and the effects of calcium flux antagonists on its activity. Toxicon 2005, 45, 829–841, doi:10.1016/j.toxicon.2004.12.022.
[58]  Brown, S.E.; Cao, A.T.; Dobson, P. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Appl. Environ. Microb. 2006, 72, 1653–1662, doi:10.1128/AEM.72.2.1653-1662.2006.
[59]  Park, J.M.; Kim, M.; Min, J. Proteomic identification of a novel toxin protein (Txp40) from Xenorhabdus nematophila and its insecticidal activity against larvae of Plutella xylostella. J. Agric. Food Chem. 2012, 60, 4053–4059, doi:10.1021/jf204351f.
[60]  Brown, S.E.; Cao, A.T.; Hines, E.R.; Akhurst, R.J.; East, P.D. A novel secreted protein toxin from the insect pathogenic bacterium Xenorhabdus nematophila. J. Biol. Chem. 2004, 279, 14595–14601, doi:10.1074/jbc.M309859200.
[61]  Sicard, M.; Le Brun, N.; Pages, S. Effect of native Xenorhabdus on the fitness of their Steinernema hosts: Contrasting types of interaction. Parasitol. Res. 2003, 91, 520–524, doi:10.1007/s00436-003-0998-z.
[62]  Singh, P.; Park, D.; Forst, S. Xenocin export by the flagellar type III pathway in Xenorhabdus nematophila. J. Bacteriol. 2013, 195, 1400–1410, doi:10.1128/JB.01532-12.
[63]  Sergeant, M.; Jarrett, P.; Ousley, M. Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Appl. Environ. Microb. 2003, 69, 63344–63349.
[64]  Pan, Y.; Jian, H.; Zhang, J. An intracellular toxic protein (Xin) isolated from Xenorhabdus nematophilus strain BJ. Prog. Nat. Sci. 2002, 12, 310–312.
[65]  Vigneux, F.; Zumbihl, R.; Jubelin, G. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J. Biol. Chem. 2007, 282, 9571–9580, doi:10.1074/jbc.M604301200.
[66]  Viitanen, P.V.; Gatenby, A.A.; Lorimer, G.H. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci. 1992, 1, 363–369, doi:10.1002/pro.5560010308.
[67]  Ellis, J.R. Chaperomics: In vivo GroEL function defined. Curr. Biol. 2005, 15, R661–R663, doi:10.1016/j.cub.2005.08.025.
[68]  Yang, J.; Zeng, H.M.; Lin, H.F. An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J. Invertebr. Pathol. 2012, 110, 60–67, doi:10.1016/j.jip.2012.02.006.
[69]  Lamelas, A.; Gosalbes, M.J.; Manzano-Marín, A. Serratia symbiotica from the aphid Cinara cedri: A missing link from facultative to obligate insect endosymbiont. PLoS Genet. 2011, 7, 1–11.
[70]  Rae, R.; Riebesell, M.; Dinkelacker, I. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. J. Exp. Biol. 2008, 211, 1927–1936, doi:10.1242/jeb.014944.
[71]  Abebe, E.; Abebe-Akele, F.; Morrison, J. An insect pathogenic symbiosis between a caenorhabditis and serratia. Virulence 2011, 2, 158–161, doi:10.4161/viru.2.2.15337.
[72]  Jackson, T.A.; Boucias, D.G.; Thaler, J.O. Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J. Invertebr. Pathol. 2001, 78, 232–243, doi:10.1006/jipa.2002.5078.
[73]  Sikorowski, P.P.; Lawrence, A.M.; Inglis, G.D. Effects of Serratia marcescens on rearing of the tobacco budworm (Lepidoptera: Noctuidae). Am. Entomol. 2001, 47, 51–60.
[74]  Hurst, M.R.H.; Glare, T.R.; Jackson, T.A.; Ronson, C.W. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 2000, 182, 5127–5138, doi:10.1128/JB.182.18.5127-5138.2000.
[75]  Hurst, M.R.; Beard, S.S.; Jackson, T.A. Isolation and characterization of the Serratia entomophila antifeeding prophage. FEMS Microbiol. Lett. 2007, 270, 42–48, doi:10.1111/j.1574-6968.2007.00645.x.
[76]  Dodd, S.J.; Hurst, M.R.; Glare, T.R. Occurrence of sep insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii. Appl. Environ. Microb. 2006, 72, 6584–6592, doi:10.1128/AEM.00954-06.
[77]  Tennant, S.M.; Skinner, N.A.; Joe, A. Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect. Immun. 2005, 73, 6860–6867, doi:10.1128/IAI.73.10.6860-6867.2005.
[78]  Fuchs, T.M.; Bresolin, G.; Marcinowski, L. Insecticidal genes of Yersinia spp.: Taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol. 2008, 8, 1–11, doi:10.1186/1471-2180-8-1.
[79]  Parkhill, J.; Wren, B.W.; Thomson, N.R. Genome sequence of Yersinia pestis, the causitive agent of plague. Nature 2001, 413, 523–527, doi:10.1038/35097083.
[80]  Bresolin, G.; Morgan, J.A.; Illgen, D. Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol. Microbiol. 2006, 59, 503–512, doi:10.1111/j.1365-2958.2005.04916.x.
[81]  Spanier, B.; Starke, M.; Higel, F. Yersinia enterocolitica infection and tcaA-dependent killing of Ceaenorhabditis elegans. Appl. Environ. Microb. 2010, 76, 6277–6285, doi:10.1128/AEM.01274-10.
[82]  Hurst, M.R.; Jones, S.A.; Binglin, T. The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. J. Bacteriol. 2011, 193, 1966–1980, doi:10.1128/JB.01044-10.
[83]  Péchy-Tarr, M.; Bruck, D.J.; Maurhofer, M. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ. Microbiol. 2008, 10, 2368–2386, doi:10.1111/j.1462-2920.2008.01662.x.
[84]  Ruffner, B.; Péchy-Tarr, M.; Ryffel, F. Oral insecticidal activity of plant-associated pseudomonads. Environ. Microbiol. 2013, 3, 751–763, doi:10.1111/j.1462-2920.2012.02884.x.
[85]  Hassan, K.A.; Johnson, A.; Shaffer, B.T. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 2010, 12, 899–915, doi:10.1111/j.1462-2920.2009.02134.x.
[86]  Vodovar, N.; Vallenet, D.; Cruveiller, S. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 2006, 24, 673–679, doi:10.1038/nbt1212.
[87]  Margo, G.; Porcar, M. Ecological mysteries: Is Bacillus thuringiensis a real insect pathogen? Bt Res. 2012, 3, 1–2.
[88]  Yuan, Y.M.; Hu, X.M.; Liu, H.Z. Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Arch. Microbiol. 2007, 187, 425–431, doi:10.1007/s00203-006-0206-5.
[89]  Hu, X.M.; Mahillon, J. Life Cycle and Gene Exchange. In Endospore-forming Soil Bacteria, 1st ed.; Logan, N.A., DeVos, P., Eds.; Springer-Verlag Berlin: Berlin, Germany, 2011; Volume 27, pp. 89–113.
[90]  Mohan, M.; Selvakumar, G.; Sushil, S.N. Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World J. Microb. Biotechnol. 2011, 27, 2545–2551, doi:10.1007/s11274-011-0724-4.
[91]  Boucher, Y.; Douady, C.J.; Papke, R.T. Lateral gene transfer and the origins of prokaryotic groups. Annu. Rev. Genet. 2003, 37, 283–328, doi:10.1146/annurev.genet.37.050503.084247.
[92]  Andersson, J.O. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 2005, 62, 1182–1197, doi:10.1007/s00018-005-4539-z.
[93]  Acuna, R.; Padilla, B.E.; Florez-Ramos, C.P. Adaptive horizontal gene transfer of a bacterial gene to an invasive insect pest of coffee. Proc. Natl. Acad. Sci. USA 2012, 109, 4197–4202.
[94]  Pauchet, Y.; Heckel, D.G. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc. R. Soc. B Biol. Sci. 2013, 280, 1–7.
[95]  Wheeler, D.; Redding, A.J.; Werren, J.H. Characterization of an ancient lepidopteran lateral gene transfer. PLoS One 2013, 8, 1–9.
[96]  Wybouw, N.; Balabanidou, V.; Ballhorn, D.J. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochem. Mol. 2012, 42, 881–889, doi:10.1016/j.ibmb.2012.08.002.
[97]  Thomas, D.J.; Morgan, J.A.; Whipps, J.M. Plasmid transfer between Bacillus thuringiensis subsp. israelensis strains in laboratory culture, river water, and dipteran larvae. Appl. Environ. Microb. 2001, 67, 330–338, doi:10.1128/AEM.67.1.330-338.2001.
[98]  Blackburn, M.B.; Martin, P.A.; Kuhar, D.; Farrar, R.R., Jr.; Gundersen-Rindal, D.E. The Occurrence of Photorhabdus-Like Toxin Complexes in Bacillus thuringiensis. PLoS One 2011, 6, doi:10.1371/journal.pone.0018122.
[99]  Chen, G.; Zhang, Y.; Li, J. Chinitase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes. J. Invertebr. Pathol. 1996, 68, 101–108, doi:10.1006/jipa.1996.0066.
[100]  Cabral, C.M.; Cherqui, A.; Pereira, A. Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp strain Az29. Appl. Environ. Microb. 2004, 70, 3831–3838, doi:10.1128/AEM.70.7.3831-3838.2004.
[101]  Sergeant, M.; Baxter, L.; Jarret, P. Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl. Environ. Microb. 2006, 72, 5895–5907.
[102]  Chaston, J.M.; Suen, G.; Tucker, S.L. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent lifestyles from divergent genomes. PLoS One 2011, 6, e27909, doi:10.1371/journal.pone.0027909.
[103]  Goodrich-Blair, H.; Clarke, D.J. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: Two roads to the same destination. Mol. Microbiol. 2007, 64, 260–268, doi:10.1111/j.1365-2958.2007.05671.x.
[104]  Bowen, D.J.; Ensign, J.C. Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl. Environ. Microb. 1998, 64, 3029–3035.
[105]  Waterfield, N.; Dowling, A.; Sharma, S. Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Appl. Environ. Microbiol. 2001, 67, 5017–5024, doi:10.1128/AEM.67.11.5017-5024.2001.
[106]  Liu, D.; Burton, S.; Glancy, T. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat. Biotechnol. 2003, 21, 1307–1313, doi:10.1038/nbt886.
[107]  Pinheiro, V.B.; Ellar, D.J. Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cell. Microbiol. 2007, 9, 2372–2380.
[108]  Ffrench-Constant, R.; Waterfield, N. An ABC guide to the bacterial toxin complexes. Adv. Appl. Microbiol. 2005, 58, 169–183, doi:10.1016/S0065-2164(05)58005-5.
[109]  Yoshino, E.; Baxter, D.E.; Hsiao, T.H. Release of acetylcholine from rat brain synaptosomes stimulated with leptinotarsin—New neurotoxin. J. Neurochem. 1980, 34, 635–642, doi:10.1111/j.1471-4159.1980.tb11191.x.
[110]  McClure, W.O.; Abbott, B.C.; Baxter, D.E. Leptinotarsin—A presynaptic neurotoxin that stimulates release of acetylcholine. Proc. Natl. Acad. Sci. USA 1980, 77, 1219–1223, doi:10.1073/pnas.77.2.1219.
[111]  Shrestha, Y.K.; Lee, K. Oral toxicity of Photorhabdus culture media on gene expression of the adult sweetpotato whitefly, Bemisia tabaci. J. Invertebr. Pathol. 2012, 109, 91–96, doi:10.1016/j.jip.2011.10.011.
[112]  Hurst, M.R.; Glare, T.R.; Jackson, T.A. Cloning Serratia entomophila antifeeding genes—A putative defective prophage active against the grass grub Costelytra zealandica. J. Bacteriol. 2004, 186, 5116–5128, doi:10.1128/JB.186.15.5116-5128.2004.
[113]  Yang, G.; Dowling, A.J.; Gerike, U. Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J. Bacteriol. 2006, 188, 2254–2261, doi:10.1128/JB.188.6.2254-2261.2006.
[114]  Chavez, C.V.; Jubelin, G.; Courties, G. The cyclomodulin Cif of Photorhabdus luminescens inhibits insect cell proliferation and triggers host cell death by apoptosis. Microbes Infect. 2010, 12, 1208–1218, doi:10.1016/j.micinf.2010.09.006.
[115]  Wolters, M.; Boyle, E.C.; Lardong, K. Cytotoxic necrotizing factor-Y boosts Yersinia effector translocation by activating Rac. J. Biol. Chem. 2013, 288, 23543–23553, doi:10.1074/jbc.M112.448662.
[116]  Brugirard-Ricaud, K.; Duchaud, E.; Givaudan, A. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell. Microbiol. 2004, 7, 363–371, doi:10.1111/j.1462-5822.2004.00466.x.
[117]  Gendlina, I.; Held, K.G.; Bartra, S.S. Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Mol. Microbiol. 2007, 64, 1214–1227, doi:10.1111/j.1365-2958.2007.05729.x.
[118]  Waterfield, N.; Hares, M.; Hinchliffe, S. The insect toxin complex of Yersinia. Adv. Exp. Med. Biol. 2007, 603, 247–257, doi:10.1007/978-0-387-72124-8_22.
[119]  Spinner, J.L.; Jarrett, C.O.; LaRock, D.L. Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: Characterization of expression, subcellular localization, and potential role in infection of the flea vector. BMC Microbiol. 2012, 12, 1–14, doi:10.1186/1471-2180-12-1.
[120]  Odinokov, G.N.; Eroshenko, G.A.; Krasnov, J.M. Analysis of insect toxin complex gene variability of Yersinia pestis and Yersinia pseudotuberculosis strains. Russ. J. Genet. 2011, 47, 10–17.
[121]  Hares, M.C.; Hinchliffe, S.J.; Strong, P.C. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiol. SGM 2008, 154, 3503–3517, doi:10.1099/mic.0.2008/018440-0.
[122]  Jeong, H.U.; Mun, H.Y.; Oh, H.K. Evaluation of insecticidal activity of a bacterial strain, Serratia, sp EML-SE1 against diamondback moth. J. Microbiol. 2010, 48, 541–545, doi:10.1007/s12275-010-0221-9.
[123]  Brurberg, M.B.; Nes, I.F.; Eijsink, V.G. Comparative studies of chitinases A and B from Serratia marcescens. Microbiol. UK 1996, 142, 1581–1589, doi:10.1099/13500872-142-7-1581.
[124]  Asano, S.; Suzuki, K.; Hori, H. Synergistic effects of the supernatants from Serratia marcescens culture on larvicidal activity of Bacillus thuringiensis Cry1C toxin against common cutworm, Spodoptera litura. J. Pestic. Sci. 1999, 24, 44–48, doi:10.1584/jpestics.24.44.
[125]  Abby, S.S.; Rocha, E.P. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapeted sytems. PLoS Genet. 2012, 8, 1–15.
[126]  Vodovar, N.; Vinals, M.; Liehl, P. Drosophila host defense after oral infection by an entomopathogenic Psuedomonas species. Proc. Natl. Acad. Sci. USA 2005, 102, 11414–11419, doi:10.1073/pnas.0502240102.
[127]  Younglai, E.V.; Wu, Y.J.; Foster, W.G. Reproductive toxicology of environmental toxicants: Emerging issues and concerns. Curr. Pharm. Des. 2007, 13, 3005–3019.
[128]  Werner, I.; Hitzfeld, B. 50 years of exotoxicology since silent spring—A review. Gaia 2012, 21, 217–224.
[129]  Davies, T.G.; Field, L.M.; Williamson, M.S. The re-emergence of the bed bug as a nuisance pest: Implications of resistance to the pyrethroid insecticides. Med. Vet. Entomol. 2012, 26, 241–254, doi:10.1111/j.1365-2915.2011.01006.x.
[130]  Durand, R.; Bouvresse, S.; Berdjane, Z. Insecticide resistance in head lice: Clinical, parasitological, and genetic aspect. Clin. Microbiol. Infect. 2012, 18, 338–344, doi:10.1111/j.1469-0691.2012.03806.x.
[131]  Ranson, H.; N’Guessan, R.; Lines, J. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol. 2011, 27, 91–98, doi:10.1016/j.pt.2010.08.004.
[132]  Knight, A.L. Economics of agricultural pesticide resistance in arthropods. Annu. Rev. Entomol. 1989, 34, 293–313, doi:10.1146/annurev.en.34.010189.001453.
[133]  Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharm. 2013, 268, 157–177, doi:10.1016/j.taap.2013.01.025.
[134]  Grue, C.E.; Gibert, P.L.; Seeley, M.E. Neurophysiological and behavioral changes in non-target wildlife exposed to organophosphate and carbamate pesticides: Thermoregulation, food consumption, and reproduction. Am. Zool. 1997, 37, 369–388.
[135]  Prullage, J.B.; Tran, H.V.; Timmons, P. The combined mode of action of fipronil and amitraz on the motility of Rhipicephalus sanguineus. Vet. Parasitol. 2011, 179, 302–310, doi:10.1016/j.vetpar.2011.03.041.
[136]  Jorens, P.G.; Zandijk, E.; Belmans, L. An unusual poisoning with the unusual pesticide amitraz. Hum. Exp. Toxicol. 1997, 16, 600–601, doi:10.1177/096032719701601008.
[137]  Marrs, T.C. Toxicology of insecticides to mammals. Pest Manag. Sci. 2012, 68, 1552–1556, doi:10.1002/ps.3362.
[138]  Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034, doi:10.1016/j.bmc.2009.01.046.
[139]  Nicholson, G.M. Fighting the global pest problem: Preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 2007, 49, 413–422, doi:10.1016/j.toxicon.2006.11.028.
[140]  Castagnola, A.; Jurat-Fuentes, J.L. Bt Crops: Past and Future. In Bacillus Thuringiensis Biotechnology, 1st ed.; Sansinenea, E., Ed.; Springer: New York, NY, USA, 2012; Volume 392, pp. 283–304.
[141]  Windley, M.J.; Herzig, V.; Dziemborowicz, S.A. Spider-venom peptides as bioinsecticides. Toxins 2012, 4, 191–227, doi:10.3390/toxins4030191.
[142]  Khan, S.A.; Zafar, R.W.; Briddon, K.A. Spider venom toxin protects plants from insect attack. Transgenic Res. 2006, 15, 349–357, doi:10.1007/s11248-006-0007-2.
[143]  Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000, 80, 717–766.
[144]  Heimpel, A.M.; Angus, T.A. The taxonomy of insect pathogens related to Bacillus cereus frankland and frankland. Can. J. Microbiol. 1958, 4, 531–541, doi:10.1139/m58-058.
[145]  Heimpel, A.M.; Angus, T.A. The site of action of crystalliferous bacteria in lepidopteran larvae. J. Insect Pathol. 1959, 1, 152–170.
[146]  Hartenstein, V. Development of the insect stomatogastric nervous system. Trends Neurosci. 1997, 20, 421–427, doi:10.1016/S0166-2236(97)01066-7.
[147]  Rodriguez-Cabrera, L.; Trujillo-Bacallao, D.; Borras-Hidalgo, O. Molecular characterization of Spodoptera frugiperda Bacillus thuringiensis Cry1Ca toxin interaction. Toxicon 2008, 51, 681–692, doi:10.1016/j.toxicon.2007.12.002.
[148]  Aronson, A.I.; Shai, Y. Why Bacillus thuringiensis insecticidal toxins are so effective: Unique features of their mode of action. FEMS Microbiol. Lett. 2001, 195, 1–8, doi:10.1111/j.1574-6968.2001.tb10489.x.
[149]  Cheung, P.Y.; Roe, R.M.; Hammock, B.D. The apparent in vivo neuromuscular effects of the δ-endotoxin of Bacillus thuringiensis var. israelensis in mice and insects of four orders. Pest. Biochem. Physiol. 1985, 23, 85–94, doi:10.1016/0048-3575(85)90081-1.
[150]  Cahan, R.; Shainberg, A.; Pechatnikov, I. A 28,000 mol. Wt toxin from Bacillus thuringiensis israelensis induces cation transport in rat muscle cultures. Toxicon 1995, 33, 943–951, doi:10.1016/0041-0101(95)00007-9.
[151]  Münch, A.; Stingl, L.; Jung, K. Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 2008, 9, 1–17, doi:10.1186/1471-2164-9-1.
[152]  Katrukha, G.S.; Zarubina, A.P.; Iudina, T.P. Antibiotics produced by Photorhabdus luminescens ZMI, a symbiont of entomopathogenic nematodes. Antibiot Khimioter 2009, 54, 11–16.
[153]  Lesic, B.; Zouine, M.; Ducos-Galand, M. A natural system of chromosome transfer in Yersinia pseudotuberculosis. PLoS Genet. 2012, 8, e1002529, doi:10.1371/journal.pgen.1002529.
[154]  Hurst, M.R.; Becher, S.A.; O’Callaghan, M. Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid 2011, 65, 32–41, doi:10.1016/j.plasmid.2010.10.001.
[155]  Ffrench-Constant, R.H.; Bowen, D.J. Novel insecticidal toxins from nematode-symbiotic bacteria. Cell. Mol. Life Sci. 2000, 57, 828–833, doi:10.1007/s000180050044.
[156]  Pendleton, I.R. Sodium and potassium fluxes in Philosamia ricini during Bacillus thuringiensis protein crystal intoxication. J. Invertebr. Pathol. 1970, 16, 313–314, doi:10.1016/0022-2011(70)90082-0.
[157]  Bloomquist, J.R. Ion channels as targets for insecticides. Annu. Rev. Entomol. 1996, 41, 163–190, doi:10.1146/annurev.en.41.010196.001115.
[158]  Fast, P.G.; Angus, T.A. Effects of parasporal inclusions of Bacillus thuringiensis var. sotto ishiwata on the permeability of the gut wall of Bombyx mori (Linnaeus) larvae. J. Invertebr. Pathol. 1965, 7, 29–32, doi:10.1016/0022-2011(65)90148-5.
[159]  Griego, V.M.; Moffet, D.; Spence, K.D. Inhibition of active K+ transport in the tobacco hornworm (Manduca sexta) midgut after ingestion of Bacillus thuringiensis endotoxin. J. Insect Physiol. 1979, 25, 283–288, doi:10.1016/0022-1910(79)90056-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133