It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.
References
[1]
Wenner, A.M.; Wells, P.H.; Johnson, D.L. Honey bee recruitment to food sources: Olfaction or language? Science 1969, 164, 84–86.
[2]
Valdusich, T.; Hemmi, J.M.; Zeil, J. Honeybee odometry and scent guidance. J. Exp. Biol. 2006, 209, 1367–1375, doi:10.1242/jeb.02156.
[3]
Kirchner, W.H.; Grasser, A. The significance of odor cues and dance language information for the food search behavior of honeybees (Hymenoptera: Apidae). J. Insect Behav. 1998, 11, 169–178, doi:10.1023/A:1021098405564.
[4]
Gil, M.; Marco, R.J. Olfactory learning by means of trophallaxis in Apis mellifera. J. Exp. Biol. 2005, 208, 671–680, doi:10.1242/jeb.01474.
[5]
Gruter, C.; Acosta, L.E.; Farina, W.M. Propagation of olfactory information within the honeybee hive. Behav. Ecol. Sociobiol. 2006, 60, 707–715, doi:10.1007/s00265-006-0214-0.
[6]
Kellog, F.E.; Frizel, D.F.; Wright, R.H. The olfactory guidance of flying insects. IV Drosophila. Can. Entomol. 1962, 94, 884–888.
Baker, T.C.; Willis, M.A.; Haynes, K.F.; Phelan, P.L. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 1985, 10, 257–265, doi:10.1111/j.1365-3032.1985.tb00045.x.
[9]
Byers, J.A. Upwind flight orientation to pheromone in western pine beetle tested with rotating windvane traps. J. Chem. Ecol. 1988, 14, 189–198, doi:10.1007/BF01022541.
[10]
Willis, M.A.; Arbas, E.A. Odor-modulated upwind flight of the phinx moth, Manduca sexta L. J. Comp. Physiol. A 1991, 169, 427–440.
[11]
Barata, E.N.; Araujo, J. Olfactory orientation responses of the eucalyptus woodborer, Phoracantha semipunctata, to host plant in a wind tunnel. Physiol. Entomol. 2001, 26, 26–37, doi:10.1046/j.1365-3032.2001.00213.x.
[12]
Frye, M.A.; Tarsitano, M.; Dickinson, M.H. Odor localization requires visual feedback during free flight in Drosophila melanogaster. J. Exp. Biol. 2002, 206, 843–855.
[13]
Budick, S.A.; Dickinson, M.H. Free-flight responses of Drosophila melanogaster to attractive odor. J. Exp. Biol. 2006, 209, 3001–3017, doi:10.1242/jeb.02305.
[14]
Becher, P.G.; Bengtsson, M.; Hansson, B.S.; Witzgall, P. Flying the fly: Long-range flight behavior of Drosophila melanogaster to attractive odors. J. Chem. Ecol. 2010, 36, 599–607, doi:10.1007/s10886-010-9794-2.
[15]
Jacobs, L.F. From chemotaxis to the cognitive map: The function of olfaction. Proc. Natl. Acad. Sci. USA 2012, 109, 10693–10700, doi:10.1073/pnas.1201880109.
[16]
Kanzaki, R.; Sugi, N.; Shibuya, T. Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool. Sci. 1992, 9, 515–527.
[17]
Reynolds, A.M.; Swain, J.L.; Smith, A.D.; Martin, A.P.; Osborne, J.L. Honeybees use a Lévy flight search strategy and odour-mediated anemotaxis to relocate food sources. Behav. Ecol. Sociobiol. 2009, 64, 115–123, doi:10.1007/s00265-009-0826-2.
[18]
Menzel, R.; Greggers, U. Guidance by odors in honeybee navigation. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 867–873, doi:10.1007/s00359-013-0850-6.
[19]
Virtual DubMod Homepage. Available online: http://virtualdubmod.sourceforge.net/ (accessed on 31 October 2013).
[20]
Wehner, R.; Rossel, S. The bee’s celestial compass-a case study in behavioral neurobiology. In Experimental Behavioral Ecology and Sociobiology; Holldobler, B., Lindauer, M., Eds.; Sinauer Associates: Sunderland, CT, USA, 1985; pp. 11–53.
[21]
Von Frisch, K. Der Farbensinn und Formensinn der Bienen. In Abteilung für Allgemeine Zoologie und Physiologie der Tiere; Verlag von Gustav Fischer: Jena, Germany, 1914; Volume 35, pp. 1–188.
[22]
Esch, H.E.; Burns, J.E. Honeybees use optic flow to measure the distance of a food source. Naturwissenshaften 1995, 82, 28–40, doi:10.1007/BF01167866.
[23]
Esch, H.E.; Burns, J.E. Distance estimation by foraging honeybees. J. Exp. Biol. 1996, 199, 155–162.
[24]
Srinivasan, M.V.; Zhang, S.W.; Lehrer, M.; Collet, T.S. Honeybee navigation en route to the goal: Visual flight control and odometry. J. Exp. Biol. 1996, 199, 237–244.
[25]
Srinivasan, M.V.; Zhang, S.W.; Bidwell, N. Visually mediated odometry in honebees. J. Exp. Biol. 1997, 200, 2513–2522.
[26]
Srinivasan, M.V.; Zhang, S.W.; Altwein, M.; Tautz, J. Honeybee navigation: Nature and calibration of the ‘odometer’. Science 2000, 287, 851–853, doi:10.1126/science.287.5454.851.
Weber, A.A.; Portelli, G.; Benard, B.; Dyer, A.; Giurfa, M. Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J. Exp. Biol. 2010, 213, 593–601, doi:10.1242/jeb.039263.
[30]
Franceschini, N.; Ruffier, F.; Serres, J.; Viollet, S. Optic flow based visual guidance: From flying insects to miniature aerial vehicles. In Aerial Vehicles; Lam, T.M., Ed.; InTech: Rijeka, Croatia, 2009; pp. 747–770.
[31]
Chaffiol, A.; Laloi, D.; Pham-Delegue, M.-H. Prior classical olfactory conditioning improves odour-cued flight orientation of honey bees in a wind tunnel. J. Exp. Biol. 2005, 208, 3731–3737, doi:10.1242/jeb.01796.
[32]
Reinhard, J.; Srinivasan, M.V.; Guez, D.; Zhang, S.W. Floral scents induce recall of navigational and visual memories in honeybees. J. Exp. Biol. 2004, 207, 4371–4381, doi:10.1242/jeb.01306.
[33]
Sigg, D.; Thompson, C.M.; Mercer, A.R. Activity-dependent changes to the brain and behavior of the honey bee, Apis mellifera (L.). J. Neurosci. 1997, 17, 7148–7156.
[34]
Farris, S.M.; Robinson, G.E.; Farhbach, S.E. Experience- and age-related outgrowth of intrinsic neurons in the Mushroom bodies of the adult worker honeybee. J. Neurosci. 2001, 21, 6395–6404.
[35]
Frye, M.A. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta. J. Exp. Biol. 2001, 204, 3683–3691.
[36]
Tytell, E.D.; Ellington, C.P. How to perform measurements in a hovering animal’s wake: Physical modeling of the cortex wake of the hawkmoth, Manduca sexta. Philos. Trans. R. Soc. Lond. B 2003, 358, 1559–1566, doi:10.1098/rstb.2003.1355.
[37]
Bastlan, J.; Esch, H. The nervous control of the indirect flight muscles of the honey bee. Z. Vgl. Physiol. 1970, 67, 307–324, doi:10.1007/BF00340954.
[38]
Altshuler, D.L.; Dickson, W.B.; Vance, J.T.; Roverts, S.P.; Dickinson, M.H. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proc. Natl. Acad. Sci. USA 2005, 102, 18213–18218, doi:10.1073/pnas.0506590102.