Bacillus thuringiensis ( Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
References
[1]
Aronson, A.I.; Beckman, W.; Dunn, P. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 1986, 50, 1–24.
[2]
Schnepf, E.; Crickmore, N.; van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 1998, 62, 775–806.
[3]
Bravo, A.; Sarabia, S.; Lopez, L.; Ontiveros, H.; Abarca, C.; Ortiz, A.; Ortiz, M.; Lina, L.; Villalobos, F.J.; Pe?a, G.; et al. Characterization of cry genes in a mexican Bacillus thuringiensis strain collection. Appl. Environ. Microb. 1998, 64, 4965–4972.
[4]
Lecadet, M.M.; Frachon, E.; Dumanoir, V.C.; Ripouteau, H.; Hamon, S.; Laurent, P.; Thiéry, I. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 1999, 86, 660–672, doi:10.1046/j.1365-2672.1999.00710.x.
[5]
Xu, D.; C?té, J.C. Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Appl. Environ. Microbiol. 2008, 74, 5524–5532, doi:10.1128/AEM.00951-08.
Crickmore, N. Beyond the spore: Past and future developments of Bacillus thuringiensis as a biopesticide. J. Appl. Microbiol. 2006, 101, 616–619, doi:10.1111/j.1365-2672.2006.02936.x.
[8]
Hendriksen, N.B.; Hansen, B.M. Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. Can. J. Microbiol. 2002, 48, 256–261, doi:10.1139/w02-009.
[9]
Marco, G.; Manuel, P. Ecological mysteries: Is Bacillus thuringiensis a real insect pathogen? Bt Res. 2012, 3, 1–2.
[10]
Jensen, G.B.; Hansen, B.M.; Eilenberg, J.; Mahillon, J. The hidden lifestyles of Bacillus cereus and relatives. Appl. Environ. Microbiol. 2003, 5, 631–640.
[11]
Cangelosi, G.A.; Freitag, N.E.; Buckley, M.R. From Outside to Inside: Environmental Microorganisms as Human Pathogens; American Society for Microbiology: Washington, DC, USA, 2004.
[12]
Martin, P.A.W.; Travers, R.S. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 1989, 55, 2437–2442.
[13]
Fiuza, L.; Nielsen-Leroux, C.; Goze, E.; Frutos, R.; Charles, J. Binding of Bacillus thuringiensis Cry1 toxins to the midgut brush border membrane vesicles of Chilo. suppressalis (Lepidoptera: Pyralidae): Evidence of shared binding sites. Appl. Environ. Microbiol. 1996, 62, 1544–1549.
[14]
Cappello, M.; Bungiro, R.D.; Harrison, L.M.; Bischof, L.J.; Griffitts, J.S.; Barrows, B.D.; Aroian, R.V. A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma. ceylanicum. Proc. Natl. Acad. Sci. USA 2006, 103, 15154–15159, doi:10.1073/pnas.0607002103.
[15]
Fang, Y.; Li, Z.; Liu, J.; Shu, C.; Wang, X.; Zhang, X.; Yu, X.; Zhao, D.; Liu, G.; Hu, S.; et al. A pangenomic study of Bacillus thuringiensis. J. Genet. Genomics 2011, 38, 567–576, doi:10.1016/j.jgg.2011.11.001.
[16]
Akiba, Y. Microbial ecology of Bacillus thuringiensis VI. Germination of Bacillus thuringiensis spore in the soil. Appl. Entomol. Zool. 1986, 21, 76–80.
[17]
West, A.W.; Burges, H.D.; Dixon, T.J.; Wyborn, C.H. Effect of incubation in non-sterilised and autoclaved arable soil on survival of Bacillus thuringiensis and Bacillus cereus spore inocula. N. Z. J. Agric. Res. 1985, 28, 559–566, doi:10.1080/00288233.1985.10418003.
[18]
West, A.W.; Burges, H.D.; Dixon, T.J. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: Effects of ph, moisture, nutrient availability and indigenous microorganisms. Soil Biol. Biochem. 1985, 17, 657–665, doi:10.1016/0038-0717(85)90043-4.
[19]
Saleh, S.M.; Harris, R.F.; Allen, O.N. Fate of Bacillus thuringiensis in soil: Effect of soil pH and organic amendment. Can. J. Microbiol. 1970, 16, 677–680, doi:10.1139/m70-116.
[20]
Polanczyk, R.A.; Zanúncio, J.C.; Alves, S.B. Relationship between chemical properties of the soil and the occurrence of Bacillus thuringiensis. Ciênc. Rural 2009, 39, 1–5, doi:10.1590/S0103-84782009000100001.
[21]
Akiba, Y.; Sekijima, Y.; Aizawa, K.; Fujiyoshi, N. Microbial ecological studies on Bacillus thuringiensis. II. Dynamics of Bacillus thuringiensis in sterilized soil. Jpn. J. Appl. Entomol. Zool. 1977, 21, 41–46, doi:10.1303/jjaez.21.41.
[22]
West, A.W.; Burges, H.D.; White, R.J.; Wyborn, C.H. Persistence of Bacillus thuringiensis parasporal crystal insecticidal activity in soil. J. Invertebr. Pathol. 1984, 44, 128–133, doi:10.1016/0022-2011(84)90002-8.
[23]
Akiba, Y. Microbial ecological studies on Bacillus thuringiensis. IV. The growth of Bacillus thuringiensis in soils of mulberry plantations. Jpn. J. Appl. Entomol. Zool. 1980, 24, 13–17, doi:10.1303/jjaez.24.13.
[24]
Crecchio, C.S.G. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis ssp. kurstaki bound to humic acids from soil. Soil Biol. Biochem. 1998, 30, 463–470, doi:10.1016/S0038-0717(97)00147-8.
[25]
Tapp, L.; Calamai, L.; Stotzky, G. Adsorption and binding of the insecticidal proteins from Bacillus thuringiensis subsp. kurstaki and subsp. tenebrionis on clay minerals. Soil Biol. Biochem. 1994, 26, 663–679, doi:10.1016/0038-0717(94)90258-5.
[26]
Ohba, M.; Shisa, N.; Thaithanun, S.; Nakashima, K.; Lee, D.-H.; Ohgushi, A.; Wasano, N. A unique feature of Bacillus thuringiensis H-serotype flora in soils of a volcanic island of Japan. J. Gen. Appl. Microbiol. 2002, 48, 233–235, doi:10.2323/jgam.48.233.
[27]
Konecka, E.; Baranek, J.; Hrycak, A.; Kaznowski, A. Insecticidal activity of Bacillus thuringiensis strains isolated from soil and water. Sci. World J. 2012, 2012, 1–5.
[28]
Monnerat, R.; Martins, E.; Queiroz, P.; Ordúz, S.; Jaramillo, G.; Benintende, G.; Cozzi, J.; Real, M.D.; Martinez-Ramirez, A.; Rausell, C.; et al. Genetic variability of Spodoptera. frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis cry toxins. Appl. Environ. Microbiol. 2006, 72, 7029–7035, doi:10.1128/AEM.01454-06.
[29]
Guidi, V.; Patocchi, N.; Lüthy, P.; Tonolla, M. Distribution of Bacillus thuringiensis subsp. israelensis in soil of a Swiss Wetland reserve after 22 years of mosquito control. Appl. Environ. Microbiol. 2011, 77, 3663–3668, doi:10.1128/AEM.00132-11.
[30]
Petras, S.F.; Casida, L.E., Jr. Survival of Bacillus thuringiensis spores in soil. Appl. Environ. Microbiol. 1985, 50, 1496–1501.
[31]
Pedersen, J.C.; Damgaard, P.H.; Eilenberg, J.; Hansen, B.M. Dispersal of Bacillus thuringiensis var. kurstaki in an experimental cabbage field. Can. J. Microbiol. 1995, 41, 118–125, doi:10.1139/m95-016.
[32]
Akiba, Y. Assessment of rainwater-mediated dispersion of field-sprayed Bacillus thuringiensis in the soil. Appl. Entomol. Zool. 1991, 26, 477–483.
[33]
Wilcks, A.; Smidt, L.; Bahl, M.I.; Hansen, B.M.; Andrup, L.; Hendriksen, N.B.; Licht, T.R. Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats. J. Appl. Microbiol. 2008, 104, 1252–1259, doi:10.1111/j.1365-2672.2007.03657.x.
[34]
Bizzarri, M.F.; Bishop, A.H. The Ecology of Bacillus thuringiensis on the phylloplane: Colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassica. Microb. Ecol. 2008, 56, 133–139, doi:10.1007/s00248-007-9331-1.
[35]
Ammons, D.R.; Reyna, A.; Granados, J.C.; Samlal, M.S.; Rampersad, J.N. An investigation of Bacillus thuringiensis in rectal-collected fecal samples of cows. Curr. Microbiol. 2009, 59, 532–536, doi:10.1007/s00284-009-9472-1.
[36]
Zhang, L.; Peng, Y.; Wu, S.; Sun, L.; Huang, E.; Huang, T.; Xu, L.; Wu, C.; Gelbic, I.; Guan, X. Microbial ecology and association of Bacillus thuringiensis in chicken feces originating from feed. Curr. Microbiol. 2012, 65, 784–791.
[37]
Naryanan, M.S. Competitive Ability and Host Exploitation in Bacillus thuringiensis. MSc Thesis, University of Oxford, Oxford, UK, 2006.
[38]
Dubois, T.; Faegri, K.; Perchat, S.; Lemy, C.; Buisson, C.; Nielsen-LeRoux, C.; Gohar, M.; Jacques, P.; Ramarao, N.; Kolst?, A.-B.; et al. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis. PLoS Pathog. 2012, 8, e1002629, doi:10.1371/journal.ppat.1002629.
[39]
Ichimatsu, T.; Mizuki, E.; Nishimura, K.; Akao, T.; Saitoh, H.; Higuchi, K.; Ohba, M. Occurrence of Bacillus thuringiensis in fresh waters of Japan. Curr. Microbiol. 2000, 40, 217–220, doi:10.1007/s002849910044.
[40]
Lachhab, K.; Tyagi, R.D.; Valéro, J.R. Production of Bacillus thuringiensis biopesticides using wastewater sludge as a raw material: Effect of inoculum and sludge solids concentration. Process Biochem. 2001, 37, 197–208, doi:10.1016/S0032-9592(01)00198-4.
[41]
Maheswaran, S.; Sreeramanan, S.; Josephine, C.M.R.; Marimuthu, K.; Xavier, R. Occurrence of Bacillus thuringiensis in faeces of herbivorous farm animals. Afr. J. Biotechnol. 2010, 9, 8013–8019.
[42]
Maduell, P.; Armengol, G.; Llagostera, M.; Orduz, S.; Lindow, S. B. thuringiensis is a poor colonist of leaf surfaces. Microb. Ecol. 2008, 55, 212–219, doi:10.1007/s00248-007-9268-4.
[43]
Prabhakar, A.; Bishop, A.H. Effect of Bacillus thuringiensis naturally colonising Brassica. campestris var. chinensis leaves on neonate larvae of Pieris. brassicae. J. Invertebr. Pathol. 2009, 100, 193–194, doi:10.1016/j.jip.2009.02.001.
[44]
Rodríguez-Sánchez, C.; Sittenfeld, A.; Janzen, D.H.; Espinoza, A.M. Bacillus thuringiensis in caterpillars and associated materials collected from protected tropical forests in northwestern Costa Rica. Rev. Biol. Trop. 2005, 54, 265–271.
[45]
Bora, R.S.; Murty, M.G.; Shenbagarathai, R.; Sekar, V. Introduction of a Lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl. Environ. Microbiol. 1994, 60, 214–222.
[46]
Devi, V.S.; Rao, P.A.; Sharma, S.P.; Sharma, H.C. Interaction of acid exudates in chickpea with biological activity of Bacillus thuringiensis towards Helicoverpa. armigera. J. Appl. Entomol. 2013, doi:10.1111/jen.12056.
[47]
Rabinovitch, L.; Fátima, C.; Cavados, G.; Chaves, J.Q.; Silva, K.R.A.; Seldin, L. A new strain of Bacillus thuringiensis serovar israelensis very active against Blackfly larvae. Mem. Inst. Oswaldo Cruz 1999, 94, 683–685, doi:10.1590/S0074-02761999000500024.
[48]
Halverson, L.J.; Clayton, M.K.; Handelsman, J. Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol. Biochem. 1993, 25, 485–493, doi:10.1016/0038-0717(93)90074-L.
[49]
Bisht, S.C.; Mishra, P.K. Ascending migration of endophytic Bacillus thuringiensis and assessment of benefits to different legumes of N.W. Himalayas. Eur. J. Soil Biol. 2013, 56, 56–64, doi:10.1016/j.ejsobi.2013.02.004.
[50]
Subrahmanyan, P.; Reddy, M.N.; Rao, A.S. Exudation of certain organic compounds from seeds of groundnut. Seed Sci. Technol. 1983, 11, 267–272.
Coombs, J.T.; Franco, C.M.M. Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 2003, 69, 5603–5608, doi:10.1128/AEM.69.9.5603-5608.2003.
[53]
Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W.F.; Kloepper, J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997, 43, 895–914, doi:10.1139/m97-131.
[54]
Rosenblueth, M.; Martinez-Romero, E. Rhizobium. etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 2004, 181, 337–344, doi:10.1007/s00203-004-0661-9.
[55]
James, E.K.; Olivares, F.L.; de Oliveira, A.L.M.; dos Reis, F.B.; da Silva, L.G.; Reis, V.M. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J. Exp. Bot. 2001, 52, 747–760.
[56]
Bacon, C. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Contr. 2002, 23, 274–284, doi:10.1006/bcon.2001.1016.
[57]
Benhamou, N.; Kloepper, J.W.; Tuzun, S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta 1998, 204, 153–168, doi:10.1007/s004250050242.
[58]
Bent, E.; Chanway, C.P. The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can. J. Microbiol. 1998, 44, 980–988, doi:10.1139/w98-097.
[59]
Chanway, C.P. Inoculation of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. For. Sci. 1997, 43, 99–112.
[60]
Pra?a, L.B.; Gomes, A.C.M.M.; Cabral, G.; Martins, E.S.; Sujii, E.R.; Monnerat, R.G. Endophytic colonization by brazilian strains of Bacillus thuringiensis on cabbage seedlings grown in vitro. Bt Res. 2012, 3, 11–19.
[61]
McInroy, J.A.; Kloepper, J.W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can. J. Microbiol. 1995, 41, 895–901, doi:10.1139/m95-123.
[62]
Suzuki, M.T.; Hernández-Rodríguez, C.S.; Araújo, W.L.; Ferré, J. Characterization of an endophytic Bacillus thuringiensis strain isolated from sugar cane. In Proceedings of 41st Annual Meeting of the Society for Invertebrate Pathology and 9th International Conference on Bacillus thuringiensis, University of Warwick, Coventry, UK, 3–7 August 2008.
[63]
Mishra, P.K.; Mishra, S.; Selvakumar, G.; Bisht, J.K.; Kundu, S.; Gupta, H.S. Coinoculation of Bacillus thuringiensis-KR1 with Rhizobium. leguminosarum enhances plant growth and nodulation of pea (Pisum. sativum L.) and lentil (Lens culinaris L.). World J. Microbiol. Biotechnol. 2009, 25, 753–761, doi:10.1007/s11274-009-9963-z.
[64]
Ornellas, R.M.S. Bioprospection of Rizobacteria for Beneficial Effects on ‘Yellow’ Passion Fruit (Passiflora Edulis) Seedlings. MSc Thesis, State University of Santa Cruz, Ilhéus-BA, Brazil, 2011.
[65]
Da Silva, C.B. Holobionte Cacaueiro: Diversidade Genética da Por??o Microbiana Associada a Frutos de Diferentes Clones de Theobroma cacao L.(in portuguese). MSc Thesis, State University of Santa Cruz, Ilhéus-BA, Brazil, 2013.
[66]
Estruch, J.J.; Warren, G.W.; Mullins, M.A.; Nye, G.J.; Craig, J.A.; Koziel, M.G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 1996, 93, 5389–5394, doi:10.1073/pnas.93.11.5389.
[67]
McCully, E.M. Niches for bacterial endophytes in crop plants: A plant biologist’s view. Funct. Plant Biol. 2001, 28, 983–990, doi:10.1071/PP01101.
[68]
Griego, V.M.; Spence, K.D. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl. Environ. Microbiol. 1978, 35, 906–910.
[69]
Behle, R.; Mcguire, M.R.; Shasha, B.S. Effects of sunlight and simulated rain on residual activity of Bacillus thuringiensis formulations. J. Econ. Entomol. 1997, 90, 1560–1566.
[70]
Ruan, L.; Yu, Z.; Fang, B.; He, W.; Wang, Y.; Shen, P. Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Syst. Appl. Microbiol. 2004, 27, 286–289, doi:10.1078/0723-2020-00265.
[71]
Stewart, C.N.; Adang, M.J.; All, J.N.; Boerma, H.R.; Cardineau, C.; Tucker, D.; Parrott, W.A. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cry1Ac gene. Plant Physiol. 1996, 112, 121–129.
Vaeck, M.; Reynaerts, A.; Hofte, H.; Jansens, S.; Debeuckeleer, M.; Dean, C.; Zabeau, M.; Vanmontagu, M.; Leemans, J. Transgenic plants protected from insect attack. Nature 1987, 328, 33–37, doi:10.1038/328033a0.
[74]
Lampel, J.S.; Canter, G.L.; Dimock, M.B.; Kelly, J.L.; Anderson, J.J.; Uratani, B.B.; Foulke, J.S.; Turner, J.T. Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl. Environ. Microbiol. 1994, 60, 501–508.
[75]
Sk?t, L.; Timms, E.; Mytton, L. The effect of toxin-producing Rhizobium strains, on larvae of Sitona flavescens feeding on legume roots and nodules. Plant Soil 1994, 163, 141–150.
[76]
Menon, A.S.; Mestral, J. Survival of Bacillus thuringiensis var. kurstaki in waters. Water Air Soil Pollut. 1985, 25, 265–274.
[77]
De Amorim, G.V.; Whittome, B.; Shore, B.; Levin, D.B. Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-Like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with foray 48B. Appl. Environ. Microbiol. 2001, 67, 1035–1043, doi:10.1128/AEM.67.3.1035-1043.2001.
[78]
Boisvert, M.; Boisvert, J. Persistence of toxic activity and recycling of Bacillus thuringiensis var. israelensis in cold water: Field experiments using diffusion chambers in a pond. Biocontrol. Sci. Technol. 1999, 9, 507–522, doi:10.1080/09583159929479.
[79]
Nguyen, T.T.; Su, T.; Mulla, M.S. Mosquito control and bacterial flora in water enriched with organic matter and treated with Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations. J. Vector Ecol. 1999, 24, 138–153.
[80]
Manasherob, R.; Ben-Dov, E.; Zaritsky, A.; Barak, Z. Germination, growth, and sporulation of Bacillus thuringiensis subsp. israelensis in excreted food vacuoles of the protozoan Tetrahymena pyriformis. Appl. Environ. Microbiol. 1998, 64, 1750–1758.
[81]
Kweon, C.; Choi, S.; Kwon, H.; Kim, E.; Kang, H.; Moon, J.; Jang, G.; Lee, H.; Kang, S.; Kim, J.; et al. Isolation, characterization, and evaluation of Bacillus thuringiensis isolated from cow milk. Korean J. Vet. Res. 2012, 52, 169–176.
[82]
Swiecicka, I.; Fiedoruk, K.; Bednarz, G. The occurrence and properties of Bacillus thuringiensis isolated from free-living animals. Lett. Appl. Microbiol. 2002, 34, 194–198, doi:10.1046/j.1472-765x.2002.01070.x.
[83]
Peterson, J.W. Bacterial pathogenesis. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996.
[84]
Rohmer, L.; Hocquet, D.; Miller, M.I. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Ecol. Evol. 2012, 19, 341–348.
[85]
Tanada, Y.; Kaya, H.K. Insect Pathology; Academic Press: San Diego, CA, USA, 1993.
[86]
Johnston, P.R.; Crickmore, N. Gut bacteria not required for Bacillus thuringiensis insecticidal activity towards the tobacco hornworm, Manduca sexta. Appl. Environ. Microbiol. 2009, 75, 5094–5099, doi:10.1128/AEM.00966-09.
[87]
Cerstiaens, A.; Verleyen, P.; Rie, J.V.A.N.; Kerkhove, E.V.A.N.; Schwartz, J.; Laprade, R.; Loof, A.D.E.; Schoofs, L. Effect of Bacillus thuringiensis Cry1 toxins in insect hemolymph and their neurotoxicity in brain cells of Lymantria dispar. Appl. Environ. Microbiol. 2001, 67, 3923–3927.
[88]
Arg?lo Filho, R.C.; Gomes, R.A.; Barreto, M.R.; Lana, U.G.P.; Valicente, F.H.; Loguercio, L.L. Growth variation among Bacillus thuringiensis strains can affect screening procedures for supernatant-secreted toxins against insect pests. Pest Manag. Sci. 2011, 67, 1184–1192.
[89]
Loguercio, L.L.; Santos, C.G.; Barreto, M.R.; Guimaraes, C.T.; Paiva, E. Association of PCR and feeding bioassays as a large-scale method to screen tropical Bacillus thuringiensis isolates for a cry constitution with higher insecticidal effect against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Lett. Appl. Microbiol. 2001, 32, 362–367, doi:10.1046/j.1472-765X.2001.00920.x.
[90]
Loguercio, L.L.; Barreto, M.L.; Rocha, T.L.; Santos, C.G.; Teixeira, F.F.; Paiva, E. Combined analysis of supernatant-based feeding bioassays and PCR as a first-tier screening strategy for Vip-derived activities in Bacillus thuringiensis strains effective against tropical fall armyworm. J. Appl. Microbiol. 2002, 93, 269–277, doi:10.1046/j.1365-2672.2002.01694.x.
[91]
Ohba, M.; Wasano, N.; Mizuki, E. Bacillus thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan. Microbiol. Res. 2000, 155, 17–22, doi:10.1016/S0944-5013(00)80017-8.
[92]
Vallet-gely, I.; Lemaitre, B.; Boccard, F. Bacterial strategies to overcome insect defences. Nat. Rev. Microbiol. 2008, 6, 302–313, doi:10.1038/nrmicro1870.
[93]
Fedhila, S.; Guillemet, E.; Nel, P.; Lereclus, D. Characterization of two Bacillus thuringiensis genes identified by in vivo screening of virulence factors. J. Bacteriol. 2004, 70, 4784–4791.
[94]
Dalhammar, G.; Steiner, H. Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. FEBS J. 1984, 139, 247–252.
[95]
Raymond, B.; Lijek, R.S.; Griffiths, R.I.; Bonsall, M.B. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. J. Invertebr. Pathol. 2008, 99, 103–111, doi:10.1016/j.jip.2008.04.007.
[96]
Cherif, A.; Rezgui, W.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. entomocidus HD110. Microbiol. Res. 2008, 163, 684–692.
[97]
Wabiko, H.; Yasuda, E. Bacillus thuringiensis protoxin: Location of toxic border and requirement of non-toxic domain for high-level in vivo production of active toxin. Microbiology 1995, 141, 629–639, doi:10.1099/13500872-141-3-629.
[98]
Volwerk, J.J.; Koke, J.A.; Wetherwax, P.B.; Griffith, O.H. Functional characteristics of phosphatidylinositol-specific phospholipases C from Bacillus cereus and Bacillus thuringiensis. FEMS Microbiol. Lett. 1989, 52, 237–241.
[99]
Sampson, M.N.; Gooday, G.W. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 1998, 144, 2189–2194, doi:10.1099/00221287-144-8-2189.
[100]
Fedhila, S.; Nel, P.; Lereclus, D. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J. Bacteriol. 2002, 184, 3296–3304, doi:10.1128/JB.184.12.3296-3304.2002.
[101]
Fortier, M.; Vachon, V.; Frutos, R.; Schwartz, J.-L.; Laprade, R. Effect of insect larval midgut proteases on the activity of Bacillus thuringiensis Cry toxins. Appl. Environ. Microbiol. 2007, 73, 6208–6213, doi:10.1128/AEM.01188-07.
[102]
Tran, S.-L.; Guillemet, E.; Lereclus, D.; Ramarao, N. Iron regulates Bacillus thuringiensis haemolysin hlyII gene expression during insect infection. J. Invertebr. Pathol. 2013, 113, 205–208.
Ramarao, N.; Lereclus, D. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell. Microbiol. 2005, 7, 1357–1364, doi:10.1111/j.1462-5822.2005.00562.x.
[105]
Dillon, R.J.; Dillon, V.M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 2004, 49, 71–92, doi:10.1146/annurev.ento.49.061802.123416.
[106]
Wells, E.V.; Boulton, M.; Hall, W.; Bidol, S.A. Reptile-associated salmonellosis in preschool-aged children in Michigan, January 2001–June 2003. Clin. Infect. Dis. 2004, 39, 687–691, doi:10.1086/423002.
[107]
Broderick, N.; Raffa, K.F.; Handelsman, J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 2006, 103, 15196–15199, doi:10.1073/pnas.0604865103.
[108]
Broderick, N.; Robinson, C.J.; McMahon, M.D.; Holt, J.; Handelsman, J.; Raffa, K.F. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 2009, 7, 1–9, doi:10.1186/1741-7007-7-1.
[109]
Jarosz, J. Gut flora of Galleria mellonella suppressing ingested bacteria. J. Invertebr. Pathol. 1979, 34, 192–198, doi:10.1016/0022-2011(79)90101-0.
[110]
Raymond, B.; Elliot, S.L.; Ellis, R.J. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. J. Invertebr. Pathol. 2008, 98, 307–313, doi:10.1016/j.jip.2008.01.005.
[111]
Guerchicoff, A.; Dele, A. The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl. Environ. Microbiol. 2001, 67, 1090–1096, doi:10.1128/AEM.67.3.1090-1096.2001.
[112]
Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435, doi:10.1016/j.toxicon.2006.11.022.
[113]
Kostichka, K.; Warren, G.W.; Mullins, M.; Mullins, A.D.; Palekar, N.V.; Craig, J.A.; Koziel, M.G.; Estruch, J.J. Cloning of a cryV-type insecticidal protein gene from Bacillus thuringiensis: The CryV-encoded protein is expressed early in stationary phase. J. Bacteriol. 1996, 178, 2141–2144.
[114]
Song, F.; Zhang, J.; Gu, A.; Wu, Y.; Han, L.; He, K.; Chen, Z.; Yao, J.; Hu, Y.; Li, G.; et al. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl. Environ. Microbiol. 2003, 69, 5207–5211, doi:10.1128/AEM.69.9.5207-5211.2003.
[115]
Li, J.D.; Carroll, J.; Ellar, D.J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 1991, 353, 815–821, doi:10.1038/353815a0.
[116]
Vachon, V.; Laprade, R.; Schwartz, J. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. 2012, 111, 1–12, doi:10.1016/j.jip.2012.05.001.
[117]
Koller, C.N.; Bauer, L.S.; Hollingworth, R.M. Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native delta-endotoxin crystals. Biochem. Biophys. Res. Commun. 1992, 184, 692–699, doi:10.1016/0006-291X(92)90645-2.
[118]
Soberón, M.; Gill, S.S.; Bravo, A. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cell. Mol. Life Sci. 2009, 66, 1337–1349, doi:10.1007/s00018-008-8330-9.
[119]
Zhang, X.; Candas, M.; Griko, N.B. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 2005, 12, 1407–1416, doi:10.1038/sj.cdd.4401675.
[120]
Zhang, X.; Candas, M.; Griko, N.B.; Taussig, R.; Bulla, L.A. A mechanism of cell death involving an adenylyl cyclase PKA signali ng pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 2006, 103, 9897–9902.
[121]
Glare, T.R.; O’Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety; John Wiley: Chichester, UK, 2000.
[122]
Butko, P. Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses. Appl. Environ. Microbiol. 2003, 69, 2415–2422, doi:10.1128/AEM.69.5.2415-2422.2003.
[123]
Parker, M.W.; Feil, S.C. Pore-forming protein toxins: From structure to function. Prog. Biophys. Mol. Biol. 2005, 88, 91–142, doi:10.1016/j.pbiomolbio.2004.01.009.
[124]
Sayyed, A.L.I.H.; Crickmore, N.; Wright, D.J. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 2001, 67, 5859–5861, doi:10.1128/AEM.67.12.5859-5861.2001.
[125]
Oestergaard, J.; Ehlers, R.; Mart, A.C.; Real, M.D. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Appl. Environ. Microbiol. 2007, 73, 3623–3629, doi:10.1128/AEM.01056-06.
[126]
Pérez, C.; Fernandez, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Soberón, M.; Bravo, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308, doi:10.1073/pnas.0505494102.
[127]
Rincón-Castro, M.C.; Barajas-Huerta, J.; Ibarra, J.E. Antagonism between Cry1Ac1 and Cyt1A1 toxins of Bacillus thuringiensis. Appl. Environ. Microbiol. 1999, 65, 2049–2053.
[128]
Yu, C.G.; Mullins, M.A.; Warren, G.W.; Koziel, M.G.; Estruch, J.J. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 1997, 63, 532–536.
[129]
Rice, W.C. Specific primers for the detection of vip3A insecticidal gene within a Bacillus thuringiensis collection. Lett. Appl. Microbiol. 1999, 28, 378–382, doi:10.1046/j.1365-2672.1999.00536.x.
[130]
Lee, M.K.; Walters, F.S.; Hart, H.; Palekar, N.; Chen, J. The Mode of Action of the Bacillus thuringiensis Vegetative Insecticidal Protein Vip3A differs from that of Cry1Ab d-endotoxin. Appl. Environ. Microbiol. 2003, 69, 4648–4657, doi:10.1128/AEM.69.8.4648-4657.2003.
[131]
Hernández-Rodríguez, C.S.; Boets, A.; van Rie, J.; Ferré, J. Screening and identification of vip genes in Bacillus thuringiensis strains. J. Appl. Microbiol. 2009, 107, 219–225, doi:10.1111/j.1365-2672.2009.04199.x.
[132]
Crickmore, N.; Baum, J.; Bravo, A.; Lereclus, D.; Narva, K.; Sampson, K.; Schnepf, E.; Sun, M.; Zeigler, D.R. Bacillus thuringiensis toxin nomenclature. Available online: http://www.btnomenclature.info/ (accessed on 20 October 2013).
[133]
Warren, W. Vegetative insecticidal proteins: Novel proteins for control of corn pests. In Advances in Insect Control, the Role of Transgenic Plants; Carozzi, N.B., Koziel, M., Eds.; Taylors & Francis Ltd.: London, UK, 1997.
[134]
Barth, H.; Aktories, K.; Popoff, M.R.; Stiles, B.G. Binary bacterial toxins: Biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 2004, 68, 373–402, doi:10.1128/MMBR.68.3.373-402.2004.
[135]
Peng, D.; Chen, S.; Ruan, L.; Li, L.; Yu, Z.; Sun, M. Safety assessment of transgenic Bacillus thuringiensis with Vip insecticidal protein gene by feeding studies. Food Chem. Toxicol. 2007, 45, 1179–1185, doi:10.1016/j.fct.2006.12.026.
[136]
Callegan, M.C.; Cochran, D.C.; Kane, S.T.; Gilmore, M.S.; Gominet, M.; Lereclus, D. Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect. Immun. 2002, 70, 5381–5389, doi:10.1128/IAI.70.10.5381-5389.2002.
[137]
Ikezawa, H.; Nakabayashi, T.; Suzuki, K.; Nakajima, M.; Taguchi, T.; Taguchi, R. Complete purification of phosphatidylinositol-specific phospholipase C from a strain of Bacillus thuringiensis. J. Biochem. 1983, 93, 1717–1719.
[138]
Hergenrother, P.J.; Martin, S.F. Determination of the kinetic parameters for phospholipase C (Bacillus cereus) on different phospholipid substrates using a chromogenic assay based on the quantitation of inorganic phosphate. Anal. Biochem. 1997, 251, 45–49, doi:10.1006/abio.1997.2251.
[139]
Krieg, A. Concerning alpha-exotoxin produced by vegetative cells of Bacillus thuringiensis and Bacillus cereus. J. Invertebr. Pathol. 1971, 1, 134–135, doi:10.1016/0022-2011(71)90137-6.
[140]
Faust, R.M.; Bulla, A.L., Jr. Bacterial and their toxins as insecticides. In Microbial and Viral Pesticides; Kurstaki, E., Ed.; Marcel Dekker Inc.: Nova York, NY, USA, 1982.
Regev, A.; Keller, M.; Strizhov, N.; Sneh, B.; Prudovsky, E.; Chet, I.; Ginzberg, I.; Koncz-Kalman, Z.; Koncz, C.; Schell, J.; et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol. 1996, 62, 3581–3586.
[143]
Tantimavanich, S.; Pantuwatana, S.; Bhumiratana, A.; Panbangred, W. Cloning of a chitinase gene into Bacillus thuringiensis subsp. aizawai for enhanced insecticidal activity. J. Gen. Appl. Microbiol. 1997, 347, 341–347.
Andrews, R.E.; Bibilos, M.M.; Bulla, L.A. Protease activation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. Appl. Environ. Microbiol. 1985, 50, 737–742.
[146]
Guillemet, E.; Cadot, C.; Tran, S.-L.; Guinebretière, M.-H.; Lereclus, D.; Ramarao, N. The InhA Metalloproteases of Bacillus cereus contribute concomitantly to virulence. J. Bacteriol. 2010, 192, 286–294, doi:10.1128/JB.00264-09.
[147]
Donovan, W.P.; Engleman, J.T.; Donovan, J.C.; Baum, J.A.; Bunkers, G.J.; Chi, D.J.; Clinton, W.P.; English, L.; Heck, G.R.; Ilagan, O.M.; et al. Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl. Microbiol. Biot. 2006, 72, 713–719, doi:10.1007/s00253-006-0332-7.
[148]
Farkas, J.; Sebesta, K.; Horská, K.; Samek, K.; Dolejs, L.; Sorm, F. The structure of exotoxin of Bacillus thuringiensis var. gelechiae. Collect. Czech. Chem. Commun. 1968, 34, 1118–1120.
[149]
Beebee, T.; Korner, A.; Bond, R.P.M. Differential inhibition of mammalian ribonucleic acid polymerases by an exotoxin from Bacillus thuringiensis. The direct observation of nucleoplasmic ribonucleic acid polymerase activity in intact nuclei. Biochem. J. 1972, 127, 619–624.
[150]
World Health Organization-WHO. Microbial Pest Control Agent: Bacillus thuringiensis; WHO: Geneva, Switzerland, 1999; p. 125.
[151]
Calberg, G. Bacillus thuringiensis and microbial control of flies. MIRCEN J. Appl. Microb. Biotechnol. 1986, 2, 267–274, doi:10.1007/BF00933492.
[152]
Ohba, M.; Tantichodok, A.; Aizawa, K. Production of heat-stable exotoxin by Bacillus thuringiensis and related bacteria. J. Invertebr. Pathol. 1981, 38, 26–32, doi:10.1016/0022-2011(81)90030-6.
[153]
Levinson, B.L.; Kasyan, K.J.; Chiu, S.U.E.S.; Currier, T.C.; González, J.M., Jr. Identification of b-exotoxin production, plasmid encoding, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatograpy. J. Bacteriol. 1990, 172, 3172–3179.
[154]
Domingos, J.B.; Longhinotti, E.; Gageiro, V.; Nome, F. A química dos ésteres de fosfato. Quim. Nova 2003, 26, 745–753, doi:10.1590/S0100-40422003000500019.
[155]
Espinasse, S.; Gohar, M.; Lereclus, D.; Sanchis, V. An extracytoplasmic-function sigma factor is involved in a pathway controlling b-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis strain 407–1. J. Bacteriol. 2004, 186, 3108–3116, doi:10.1128/JB.186.10.3108-3116.2004.
[156]
Hassanain, M.A.; el Garhy, M.F.; Abdel-Ghaffar, F.A.; el-Sharaby, A.; Abdel Megeed, K.N. Biological control studies of soft and hard ticks in Egypt: The effect of Bacillus thuringiensis varieties on soft and hard ticks (ixodidae). Parasitol. Res. 1997, 83, 209–213, doi:10.1007/s004360050235.
[157]
Zhioua, E.; Heyer, K.; Browning, M.; Ginsberg, H.S.; LeBrun, R.A. Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 900–902.
[158]
El-Kelesh, E.A.M.; El-Refaii, M.A.H. Insecticidal effect of Bacillus thuringiensis var. kurstaki against Hyalomma dromedarii on experimentally infested rabbits. Egypt. J. Agric. Res. 2006, 83, 993.
[159]
Fernández-Ruvalcaba, M.; Pe?a-Chora, G.; Romo-Martínez, A.; Hernández-Velázquez, V.; de La Parra, A.B.; de La Rosa, D.P. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides. J. Insect Sci. 2010, 10, 1–6.
[160]
Habeeb, S.M.; El-hag, H.A.A. Ultrastructural changes in hemocyte cells of hard tick (Hyalomma dromedarii: Ixodidae): A model of Bacillus thuringiensis var. thuringiensis H14 d-endotoxin mode of action. Am. Euras. J. Agric. Environ. Sci. 2008, 3, 829–836.
[161]
Erban, T.; Nesvorna, M.; Erbanova, M.; Hubert, J. Bacillus thuringiensis var. tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions. Exp. Appl. Acarol. 2009, 49, 339–346, doi:10.1007/s10493-009-9265-z.
[162]
Payne, J.; Cannon, R.J.C.; Ralph, A.L. Bacillus thuringiensis Isolates for Controlling Acarides. US Patent 5350576A, 27 September 1994.
[163]
Wei, J.-Z.; Hale, K.; Carta, L.; Platzer, E.; Wong, C.; Fang, S.-C.; Aroian, R.V. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 2003, 100, 2760–2765, doi:10.1073/pnas.0538072100.
[164]
Mohammed, S.H.; El Saedy, M.A.E.; Enan, M.R.; Ibrahim, N.E.; Ghareeb, A.; Moustafa, A. Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J. Cell Mol. Biol. 2008, 7, 57–66.
[165]
Thompson, M.; Gaertner, F.H. Bacillus thuringiensis Isolate having Anti-Protozoan Activity. European Patent 461799A2, 28 December 1991.
[166]
Kondo, S.; Mizuki, E.; Akao, T.; Ohba, M. Antitrichomonal strains of Bacillus thuringiensis. Parasitol. Res. 2002, 88, 1090–1092, doi:10.1007/s00436-002-0692-6.
[167]
Mahillon, J.; Rezs?hazy, R.; Hallet, B.; Delcour, J. IS231 and other Bacillus thuringiensis transposable elements: A review. Genetica 1994, 93, 13–26, doi:10.1007/BF01435236.
[168]
Weisdorf, J.L. From foraging to farming: Explaining the neolithic revolution. J. Econ. Surv. 2005, 19, 561–586, doi:10.1111/j.0950-0804.2005.00259.x.
Bowden, S.E.; Drake, J.M. Ecology of multi-host pathogens of animals. Nat. Educ. Knowl. 2013, 4, 5.
[171]
Pepin, K.M.; Lass, S.; Pulliam, J.R.C.; Read, A.F.; Lloyd-Smith, J.O. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat. Rev. Microbiol. 2010, 8, 802–813, doi:10.1038/nrmicro2440.
[172]
Garamszegi, L.Z. Patterns of co-speciation and host switching in primate malaria parasites. Malar. J. 2009, 8, 1–15, doi:10.1186/1475-2875-8-110.
[173]
Peeler, E.J.; Oidtmann, B.C.; Midtlyng, P.J.; Miossec, L.; Gozlan, R.E. Non-native aquatic animals introductions have driven disease emergence in Europe. Biol. Invasions 2011, 13, 1291–1303, doi:10.1007/s10530-010-9890-9.
[174]
Mizuki, E.; Park, Y.S.; Saitoh, H.; Yamashita, S.; Akao, T.; Higuchi, K.; Ohba, M. Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immun. 2000, 7, 625–634.
[175]
Mizuki, E.; Ohba, M.; Akao, T.; Yamashita, S.; Saitoh, H.; Park, Y.S. Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: In vitro cell-killing action on human cancer cells. J. Appl. Microbiol. 1999, 86, 477–486, doi:10.1046/j.1365-2672.1999.00692.x.
[176]
Ito, A.; Sasaguri, Y.; Kitada, S.; Kusaka, Y.; Kuwano, K.; Masutomi, K.; Mizuki, E.; Akao, T.; Ohba, M. A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. J. Biol. Chem. 2004, 279, 21282–21286, doi:10.1074/jbc.M401881200.
[177]
Katayama, H.; Kusaka, Y.; Yokota, H.; Akao, T.; Kojima, M.; Nakamura, O.; Mekada, E.; Mizuki, E. Parasporin-1, a novel cytotoxic protein from Bacillus thuringiensis, induces Ca2+ influx and a sustained elevation of the cytoplasmic Ca2+ concentration in toxin-sensitive cells. J. Biol. Chem. 2007, 282, 7742–7752.
[178]
Yamashita, S.; Katayama, H.; Saitoh, H.; Akao, T.; Park, Y.S.; Mizuki, E.; Ohba, M.; Ito, A. Typical three-domain cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J. Biochem. 2005, 138, 663–672, doi:10.1093/jb/mvi177.
[179]
Okumura, S.; Saitoh, H.; Ishikawa, T.; Wasano, N.; Yamashita, S.; Kusumoto, K.-I.; Akao, T.; Mizuki, E.; Ohba, M.; Inouye, K. Identification of a novel cytotoxic protein, Cry45Aa, from Bacillus thuringiensis A1470 and its selective cytotoxic activity against various mammalian cell lines. J. Agric. Food Chem. 2005, 53, 6313–6318, doi:10.1021/jf0506129.
[180]
Kitada, S.; Abe, Y.; Shimada, H.; Kusaka, Y.; Matsuo, Y.; Katayama, H.; Okumura, S.; Akao, T.; Mizuki, E.; Kuge, O.; et al. Cytocidal actions of parasporin-2, an anti-tumor crystal toxin from Bacillus thuringiensis. J. Biol. Chem. 2006, 281, 26350–26360, doi:10.1074/jbc.M602589200.
[181]
Abe, Y.; Shimada, H.; Kitada, S. Raft-targeting and oligomerization of Parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activity. J. Biochem. 2008, 143, 269–275.
[182]
Fivaz, M.; Abrami, L.; Tsitrin, Y.; van der Goot, F.G. Aerolysin from Aeromonas. hydrophila and related toxins. Curr. Top. Microbiol. Immunol. 2001, 257, 35–52.
[183]
Galinier, R.; Portela, J.; Moné, Y.; Allienne, J.F.; Henri, H.; Delbecq, S.; Mitta, G.; Gourbal, B.; Duval, D. Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni. PLoS Pathog. 2013, 9, e1003216, doi:10.1371/journal.ppat.1003216.