Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.
Urban, M.C.; Tewksbury, J.J.; Sheldon, K.S. On a collision course: Competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. Roy. Soc. B 2012, 279, 2072–2080, doi:10.1098/rspb.2011.2367.
[3]
Van der Putten, W.H.; Macel, M.; Visser, M.E. Predicting species distribution and abundance responses to climate change: Why is it essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 2010, 365, 2025–2034, doi:10.1098/rstb.2010.0037.
Seehausen, O. Conditions when hybridization might predispose populations for adaptive radiation. J. Evol. Biol. 2013, 26, 279–281, doi:10.1111/jeb.12026.
[6]
Blois, J.L.; Zarnetske, P.L.; Fitzpatrick, M.C.; Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 2013, 341, 499–504, doi:10.1126/science.1237184.
[7]
Engler, J.O.; Rodder, D.; Elle, O.; Hochkirch, A.; Second, J. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones. J. Evol. Biol. 2013, 26, 2487–2496, doi:10.1111/jeb.12244.
[8]
Ettinger, A.K.; Hillerislambers, J. Climate isn’t everything: Competitive interactions and variation by life stage will also affect range shifts in na warming world. Am. J. Bot. 2013, 100, 1344–1355, doi:10.3732/ajb.1200489.
[9]
Ordonez, A. Realized climate niche of North American plant taxa lagged behind climate during the end of the Pleistoicene. Am. J. Bot. 2013, 100, 1255–1265, doi:10.3732/ajb.1300043.
[10]
Hanski, I. Extinction debt at different spatial scales. Anim. Conserv. 2013, 16, 12–13, doi:10.1111/acv.12024.
[11]
Urban, M.C.; Zarneske, P.L.; Skelly, D.K. Moving forward: Dispersal and species interactioins determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 2013, 1297, 44–60.
Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffman, A.A.; Langham, G. Towards an integrated framework for assessing the vulnerability of specxies to climate change. PLoS Biol. 2008, 6, 2621–2626.
[14]
McMahon, S.A.M.; Harrison, S.P.; Armbruster, W.S.; Bartein, P.J.; Beale, C.M.; Edwards, M.E.; Kattge, J.; Midgley, G.; Morin, X.; Prentice, I.C. Improving assessment of modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol. Evol. 2011, 26, 249–259, doi:10.1016/j.tree.2011.02.012.
Pauls, S.U.; Nowak, C.; Bálint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946, doi:10.1111/mec.12152.
[17]
Bálint, M.; Domisch, S.; Engelhardt, C.H.M.; Haase, P.; Lehrian, S.; Sauer, J.; Thessinger, K.; Pauls, S.U.; Nowak, C. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Chang. 2011, 1, 313–318, doi:10.1038/nclimate1191.
[18]
Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 2004, 19, 198–207, doi:10.1016/j.tree.2004.01.003.
[19]
Saccheri, I.J.; Brakefield, P.M. Rapid spread of immigrant genomes into inbred populations. Proc. R. Soc. B 2002, 269, 1073–1078, doi:10.1098/rspb.2002.1963.
[20]
Tallmon, D.A.; Luikart, G.; Waples, R.S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 2004, 19, 489–496, doi:10.1016/j.tree.2004.07.003.
Barton, N.H. Does hybridization influence speciation? J. Evol. Biol. 2013, 26, 267–269.
[23]
Hedrick, P.W. Adaptive introgression in animals: Examples and comparison to new mutation and standing variation as sources of adaptive radiation. Mol. Ecol. 2013, 22, 4606–4618, doi:10.1111/mec.12415.
[24]
Scriber, J.M. Impacts of climate warming on hybrid zone movement; Geographically diffuse and biologically porous “species borders”. Insect Sci. 2011, 18, 121–159, doi:10.1111/j.1744-7917.2010.01367.x.
[25]
Putnam, A.S.; Scriber, J.M.; Andolfatto, P. Discordant divergence times among Z-chromosome regions between two ecologically distinct swallowtail butterfly species. Evolution 2007, 61, 912–927, doi:10.1111/j.1558-5646.2007.00076.x.
[26]
Kunte, K.; Shea, C.; Aardema, M.L.; Scriber, J.M.; Junger, T.E.; Gilbert, L.E.; Kronforst, M.R. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet. 2011, 7, e1002274, doi:10.1371/journal.pgen.1002274.
[27]
Zhang, W.; Kunte, K.; Kronforst, M.R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies. Genome Biol. Evol. 2013, 5, 1233–1245, doi:10.1093/gbe/evt090.
[28]
Collins, N.M.; Smith, H.M. Threats and priorities in conserving swallowtails. In Swallowtail Butterflies, Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.C., Eds.; Scienctifc Publishers: Gainesville, FL, USA, 1995; pp. 345–353.
[29]
Bagley, K. Climate change mix-up. Audubon 2013, 115, 00977136.
[30]
Braby, M.F.; Eastwood, R.; Murray, N. The subspecies concept in butterflies: Has its application in taxonomy and conservation outlived its usefulness? Biol. J. Linn. Soc. 2012, 106, 699–716, doi:10.1111/j.1095-8312.2012.01909.x.
[31]
Whitham, T.G.; Bailey, J.K.; Schweitzer, J.A.; Shuster, S.M.; Bangert, R.K.; LeRoy, C.J.; Lonsdorf, E.V.; Allan, G.J.; DiFazio, S.P.; Potts, B.M.; et al. A framework for community and ecosystem genetics: From genes to ecosystems. Nat. Rev. Genet. 2006, 7, 510–523, doi:10.1038/nrg1877.
[32]
Kiritani, K. Different effects of climate change on population dynamics of insects. Appl. Ent. Zool. 2013, 48, 97–104, doi:10.1007/s13355-012-0158-y.
[33]
Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2011, 4, 326–337, doi:10.1111/j.1752-4571.2010.00157.x.
[34]
Wagner, H.H.; Fortin, M.-J. A conceptual framework for spatial analysis of landscape genetic data. Conserv. Genet. 2013, 14, 253–261, doi:10.1007/s10592-012-0391-5.
[35]
Sommer, S.; McDevitt, A.D.; Balkenhol, N. Landscape genetic approaches in conservation biology and management. Conserv. Genet. 2013, 14, 249–251, doi:10.1007/s10592-013-0473-z.
Barbash, D.; Siino, D.; Tarone, A.; Roote, J. A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc. Natl. Acad. Sci. USA 2003, 100, 5302–5307, doi:10.1073/pnas.0836927100.
[38]
Kahilainen, K.; Ostbye, K.; Harrod, C.; Shikano, T.; Malinen, T.; Merila, J. Species introduction promotes hybridization and introgression in Coregonus: Is there sign of selection against hybrids? Mol. Ecol. 2011, 20, 3838–3855, doi:10.1111/j.1365-294X.2011.05209.x.
[39]
Finger, A.; Kettle, C.J.; Kaiser-Bunbury, C.N.; Valentin, T.; Doudee, D.; Matatiken, D.; Ghazoul, J. Back from the brink: Potential for genetic rescue in a critically endangered tree. Mol. Ecol. 2003, 20, 3773–3784.
[40]
Prendergast, J.R.; Quinn, R.; Lawton, J.H.; Eversham, B.C.; Gibbons, D.W. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 1993, 365, 335–337, doi:10.1038/365335a0.
[41]
Myers, N.; Mittermeier, R.A.; Mittermeier, C.B.; deFonseca, G.A.B.; Kent, J. Hodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858.
[42]
Carnaval, A.C.; Moritz, C. Historical climate change predicts current biodiversity patterns in the Brazilian Atlantic Rainforest. J. Biogeogr. 2008, 35, 1187–1201, doi:10.1111/j.1365-2699.2007.01870.x.
[43]
Malcolm, J.R.; Liu, C.; Neilson, R.R.; Hansen, L.; Hannah, L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 2006, 20, 538–548, doi:10.1111/j.1523-1739.2006.00364.x.
[44]
Carnaval, A.C.; Hickerson, M.J.; Rodrigues, M.T.; Haddad, C.F.B.; Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic Rainforest hotspot. Science 2009, 323, 785–789, doi:10.1126/science.1166955.
[45]
Fritz, S.A.; Schnitzler, J.; Eronen, J.T.; Hof, C.; B?hning-Gaese, K.; Graham, C.H. Diversity in time and space: Wanted dead and alive. Trends Ecol. Evol. 2013, 28, 509–516, doi:10.1016/j.tree.2013.05.004.
[46]
Diniz-Filho, J.A.F.; Telles, M.P.C. Optimization procedures for establishing reserve networks for biodiversity conservation taking into account population genetic structure. Genet. Mol. Biol. 2006, 29, 207–214, doi:10.1590/S1415-47572006000200004.
[47]
Chapin, F.S.; Marek, A.F.; Mitchell, R.A.; Dickinson, K.J.M. Design principles for socio-ecological transformation toward sustainability: Lessons from New Zealand sense of place. Ecosphere 2012, 3. article40.
[48]
Hitzhusen, G.E.; Tucker, M.E. The potential of religion for earth stewardship. Front. Ecol. Environ. 2013, 11, 368–376, doi:10.1890/120322.
Reiners, D.S.; Reiners, W.A.; Lockwood, J.A. The relationship between environmental advocacy, values, and science: A survey of ecological scientist’s attitudes. Ecol. Appl. 2013, 23, 1226–1242, doi:10.1890/12-1695.1.
[51]
Santamaria, L.; Méndez, P.F. Evolution in biodiversity policy—Current gaps and future needs. Evol. Appl. 2012, 5, 202–218, doi:10.1111/j.1752-4571.2011.00229.x.
[52]
Tobin, P.C.; Bai, B.B.; Eggen, D.A.; Leonard, D.S. The ecology, geopolitics, and economics of managing Lymantira dispar in the United States. Intern. J. Pest Manag. 2012, 58, 195–210, doi:10.1080/09670874.2011.647836.
[53]
Rosauer, D.F.; Mooers, A.O. Nurturing the use of evolutionary diversity in nature conservation. Trends Ecol. Evol. 2013, 28, 322–323, doi:10.1016/j.tree.2013.01.014.
[54]
Winter, M.; Devictor, V.; Schweiger, O. Phylogenetic diversity and nature conservation: Where are we? Trends Ecol. Evol. 2013, 28, 199–204, doi:10.1016/j.tree.2012.10.015.
[55]
Gompert, Z.; Lucas, L.K.; Nice, C.C.; Fordyce, J.A.; Forister, M.L.; Buerkle, C.A. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution 2012, 66, 2167–2181, doi:10.1111/j.1558-5646.2012.01587.x.
[56]
Gompert, Z.; Parchman, T.L.; Buerkle, C.A. Genomics of isolation in hybrids. Phil. Trans. R. Soc. B 2012, 367, 439–450, doi:10.1098/rstb.2011.0196.
[57]
Carstens, B.C.; Pelletier, T.A.; Reid, N.M.; Satler, J.D. How to fail at species delimitation. Mol. Ecol. 2013, 22, 4369–4383, doi:10.1111/mec.12413.
[58]
Reusch, T.B.H.; Ehlers, A.; Hammerli, A.; Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 2005, 102, 2826–2831, doi:10.1073/pnas.0500008102.
Armbruster, P.; Reed, D.H. Inbreeding depression in benign and stressful environments. Heredity 2005, 95, 235–242, doi:10.1038/sj.hdy.6800721.
[61]
Bijlsma, R.; Loeschcke, V. Genetic erosion impedes adaptive responses to stressful environments. Evol. Appl. 2012, 5, 117–129, doi:10.1111/j.1752-4571.2011.00214.x.
[62]
Reed, D.H.; Fox, C.W.; Enders, L.S. Inbreeding-stress-interactions: Evolutionary conservation consequences. Ann. N. Y. Acad. Sci. 2012, 1256, 33–48, doi:10.1111/j.1749-6632.2012.06548.x.
[63]
Behm, J.E.; Ives, A.R.; Boughman, J.W. Breakdown in post-mating isolation and collapse of a species pair through hybridization. Am. Nat. 2010, 175, 11–26, doi:10.1086/648559.
[64]
Seehausen, O.; Takimoto, G.; Roy, D.; Jokela, J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 2007, 17, 30–44, doi:10.1111/j.1365-294X.2007.03529.x.
[65]
McKinnon, J.S.; Taylor, E.B. Biodiversity: Species choked and blended. Nature 2012, 482, 313–314, doi:10.1038/482313a.
[66]
Arnold, M.L.; Martin, N.H. Hybrid fitness across time and habitats. Trends Ecol. Evol. 2010, 25, 530–536, doi:10.1016/j.tree.2010.06.005.
[67]
Collins, M.M. Genetics and ecology of a hybrid zone in Hyalophora (Lepidoptera: Saturniidae). Univ. Calif. Publ. Entomol. 1984, 104, 1–93.
[68]
Gompert, Z.; Fordyce, J.A.; Forister, M.; Shapiro, A.M.; Nice, C.C. Homoploid hybrid speciation in an extreme habitat. Science 2006, 314, 1923–1925, doi:10.1126/science.1135875.
[69]
Nice, C.C.; Gompert, Z.; Fordyce, J.A.; Forister, M.L.; Lucas, L.K. Hybrid speciation and independent evolution in lineages of alpine butterflies. Evolution 2013, 67, 1055–1068, doi:10.1111/evo.12019.
Bracken, M.E.S.; Low, N.H.N. Realistic losses of rare species disproportionately impact higher trophic levels. Ecol. Lett. 2012, 15, 461–467, doi:10.1111/j.1461-0248.2012.01758.x.
[72]
Williams, S.E.; Williams, Y.M.; vanderWal, J.; Shoo, L.P.; Johnson, C.N. Ecological specialization and population size in a biodiversity hotspot: How rare species avoid extinction. Proc. Natl. Acad. Sci. USA 2009, 106, 19737–19741, doi:10.1073/pnas.0901640106.
[73]
Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201, doi:10.1146/annurev.ento.45.1.175.
[74]
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 2006, 37, 637–669.
[75]
Thomas, C.D.; Bulman, C.R.; Wilson, R.J. Where within a species geographical range do species survive best? A matter of scale. Insect Conserv. Divers. 2008, 1, 2–8, doi:10.1111/j.1752-4598.2007.00001.x.
[76]
Daniels, J.C. Cooperative conservation efforts to help recover an endangered south Florida butterfly. Insect Conserv. Divers. 2009, 2, 62–64, doi:10.1111/j.1752-4598.2008.00039.x.
[77]
Roy, H.E.; Hails, R.S.; Hesketh, H.; Roy, D.B.; Pell, J.K. Beyond biological control: Non-pest insects and their pathogens in a changing world. Insect Conserv. Divers. 2009, 2, 65–72, doi:10.1111/j.1752-4598.2009.00046.x.
[78]
Tyliankis, J.M. Warming up the food webs. Science 2009, 323, 1300–1301, doi:10.1126/science.1170909.
[79]
Didham, R.K.; Basset, Y.; Leather, S.R. Research needs in insect conservation and diversity. Insect Conserv. Divers. 2010, 3, 1–4, doi:10.1111/j.1752-4598.2009.00076.x.
[80]
Massad, T.J.; Dyer, L.A. A meta-analysis of the effects of global environment change on plant-herbivore interactions. Arthropod Plant Int. 2010, 4, 181–188, doi:10.1007/s11829-010-9102-7.
[81]
Zvereva, E.L.; Kozlov, M.V.; Hilker, M. Evolutionary variations on a theme: Host plant specialization in five geographical populations of the leaf beetle Chrysomela lapponica. Popul. Ecol. 2010, 52, 389–396, doi:10.1007/s10144-010-0200-2.
[82]
Isaacs, R.; Tuell, J.; Fiedler, A.; Gardner, M.; Landis, D. Maximizing arthropod-mediated ecosystem services in agricultural landscapes: The role of native plants. Front. Ecol. Environ. 2009, 7, doi:10.1890/080035.
[83]
Chown, S.L.; Hioffmann, A.A.; Kristensen, T.N.; Angilletta, M.J.; Stenseth, N.C.; Pertoldi, C. Adapting to climate change: A perspective from evolutionary physiology. Clim. Res. 2010, 43, 3–15, doi:10.3354/cr00879.
[84]
Gilman, S.E.; Urban, M.C.; Tewksbury, J.; Gilchrist, G.W.; Holt, R.D. A framework for community interactions under climate change. Trends Ecol. Evol. 2010, 25, 325–331, doi:10.1016/j.tree.2010.03.002.
[85]
Gilman, R.T.; Fabina, N.S.; Abbott, K.C.; Rafferty, N.E. Evolution of plant-pollinator mutualisms in response to climate change. Evol. Appl. 2012, 5, 2–16, doi:10.1111/j.1752-4571.2011.00202.x.
[86]
Magurran, A.E.; Baillie, S.R.; Buckland, S.T.; Dick, J.M.; Elston, D.A.; Scott, E.M.; Somerville, P.J.; Watt, A.D. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol. Evol. 2010, 25, 574–582, doi:10.1016/j.tree.2010.06.016.
[87]
Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harringtoin, R.; Luck, J.; Zalucki, M.P. Adapting to crop pest and pathogen risks under a changing climate. Clim. Chang 2011, 2, 220–237.
[88]
Juroszek, P.; von Tiedmann, A. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. J. Agric. Sci. 2013, 151, 163–185, doi:10.1017/S0021859612000500.
[89]
Burkle, L.A.; Martin, J.C.; Knight, T.M. Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science 2013, 339, 1611–1615, doi:10.1126/science.1232728.
[90]
Hunter, M.C.; Hunter, M.D. Designing for conservation in the built environment. Insect Conserv. Divers. 2008, 1, 189–196.
Lankau, R.A.; Strauss, S.Y. Newly rare or newly common: Evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol. Appl. 2011, 4, 338–353, doi:10.1111/j.1752-4571.2010.00173.x.
Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; Garcia-Berthou, E.; Pascal, M.; et al. Combined effects of global pressures on animal-mediated pollination. Trends Ecol. Evol. 2013, 28, 524–530, doi:10.1016/j.tree.2013.05.008.
[95]
Gonzalez-Varo, J.P.; Biesmeijer, J.C.; Bommarco, R.; Potts, S.G.; Schweiger, O.; Smith, H.G.; Steffan-Dewenter, I.; Szengy?rgyi, H.; Woyciechowski, M.; Vilà, M. Combined effects of global pressures on animal-mediated pollination. Trends Ecol. Evol. 2013, 28, 524–530, doi:10.1016/j.tree.2013.05.008.
[96]
Culumber, Z.W.; Shepard, D.B.; Coleman, S.W.; Rosenthal, G.G.; Tobler, M. Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphorus). J. Evol. Biol. 2012, 25, 1800–1814, doi:10.1111/j.1420-9101.2012.02562.x.
[97]
Scriber, J.M. Integrating ancient patterns and current dynamics of insect-plant interactions: Taxonomic and geographic variation in herbivore specialization. Insect Sci. 2010, 17, 471–507, doi:10.1111/j.1744-7917.2010.01357.x.
[98]
Kendra, P.A.; Montgomery, W.S.; Niogret, J.; Epsky, N.D. An uncertain future for American Lauraceae: A lethal threat from Redbay Ambrosia beetlke and Laurel Wilt Disease. Am. J. Plant Sci. 2013, 4, 727–738, doi:10.4236/ajps.2013.43A092.
[99]
Pavulaan, H.; Wright, D.M. Pterourus appalachiensis (Papilionidae: Papilioninae), a new swallowtail butterfly from the Appalachian region of the United States. Taxon. Rept. 2002, 3, 1–20.
[100]
Scriber, J.M.; Ording, G.L. Ecological speciation without host plant specialization: Possible origins of a recently described cryptic Papilio species (Lepidoptera: Papilionidae). Ent. Exp. Appl. 2005, 115, 247–263, doi:10.1111/j.1570-7458.2005.00285.x.
Seehausen, O. Progressive levels of trait divergence along a “speciation transect” in the lake victoria cichlid fish Pundamila. In Speciation and Patterns of Diversity; Butlin, R., Bridle, R., Schluter, D., Eds.; Cambridge University Press: Cambridge, UK, 2009.
[103]
Feder, J.L.; Egan, S.P.; Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 2012, 28, 342–350, doi:10.1016/j.tig.2012.03.009.
[104]
Harrison, R.G. The language of speciation. Evolution 2011, 66, 3643–3657, doi:10.1111/j.1558-5646.2012.01785.x.
[105]
Webb, C.O.; Losos, J.B.; Agrawal, A.A. Integrating phylogenies into community ecology. Ecology 2006, 87, 51–52.
[106]
Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 2008, 58, 501–517, doi:10.1641/B580607.
[107]
Bailey, J.K.; Schweitzer, J.A.; Ubeda, F.; Koricheva, J.; LeRoy, C.J.; Madrich, M.D.; Rehill, B.J.; Bangert, R.KI.; Fischer, D.G.; Allan, G.J.; et al. From genes to ecosystems: A synthesis of the effects of plant genetic factors across levels of organization. Phil. Trans. R. Soc. B 2009, 364, 1607–1616, doi:10.1098/rstb.2008.0336.
[108]
Norberg, J.; Urban, M.C.; Klausmeier, C.A.; Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Chang 2012, 2, 747–751, doi:10.1038/nclimate1588.
[109]
Segelbacher, G.; Cushman, S.A.; Epperson, B.K.; Fortin, M.-J.; Francois, O.; Handy, O.J.; Holderegger, R.; Manel, S. Applications of landscape genetics in conservation biology: Concepts and challenges. Conserv. Genet. 2010, 11, 375–385, doi:10.1007/s10592-009-0044-5.
Clarke, K.E.; Rinderer, T.E.; Franck, P.; Quezada-Euan, J.G.; Oldroyd, B.P. The Africanization of honeybees (Apis mellifera L.) of the Yucatan: A study of a massive hybridization event across time. Evolution 2002, 56, 1462–1474.
[115]
Manel, S.; Joost, S.; Epperson, B.K.; Holderegger, R.; Storfer, A.; Rosenberg, M.S.; Scribner, K.T.; Bonin, A.; Fortin, M.J. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol. Ecol. 2010, 19, 3760–3772, doi:10.1111/j.1365-294X.2010.04717.x.
[116]
Spear, S.F.; Balkenhol, N.; Fortin, M.J.; McRae, B.H.; Scribner, K.T. Use of resistance surfaces for landscape genetics studies: Consideration for parameterization and analysis. Mol. Ecol. 2010, 19, 3576–3591, doi:10.1111/j.1365-294X.2010.04657.x.
[117]
Aardema, M.L.; Scriber, J.M.; Hellmann, J.J. Considering local adaptation in issues of Lepidopteran conservation—A review and recommendations. Am. Midl. Nuturalist 2011, 165, 294–303, doi:10.1674/0003-0031-165.2.294.
[118]
Evans, L.M.; Allan, G.J.; Shuster, S.M.; Woolbright, S.A.; Whitham, T.G. Tree hybridization and genotypic variation drive cryptic speciation of a specialist mite herbivore. Evolution 2008, 62, 3027–3040, doi:10.1111/j.1558-5646.2008.00497.x.
[119]
Dowling, T.E.; Secor, C.L. The role of hybridization and introgression in the diversification of animals. Annu. Rev. Ecol. Syst. 1997, 28, 593–620, doi:10.1146/annurev.ecolsys.28.1.593.
[120]
Mallet, J. Hybrid speciation. Nature 2007, 446, 279–283, doi:10.1038/nature05706.
[121]
Mavarez, J.; Linares, M. Homoploid hybrid speciation in animals. Mol. Ecol. 2008, 17, 4181–4185, doi:10.1111/j.1365-294X.2008.03898.x.
Wirtz, P. Mother species-father species: Unidirectional hybridization in animals with female choice. Anim. Behav. 1999, 58, 1–12, doi:10.1006/anbe.1999.1144.
[126]
Andolfatto, P.; Scriber, J.M.; Charlesworth, B. No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution 2003, 57, 305–316.
[127]
Qvarnstr?m, A.; Bailey, R.I. Speciation through evolution of sex-linked genes. Heredity 2009, 102, 4–15, doi:10.1038/hdy.2008.93.
[128]
Joost, S.; Vuilleumire, S.; Jensen, J.D.; Schoville, S.; Leempoel, K.; Stuki, S.; Widmer, I.; Melodelima, C.; Rolland, J.; Manel, S. Uncovering the genetic basis of adaptive change: On the intersection of landscape genomics and theoretical population genetics. Mol. Ecol. 2013, 22, 3659–3665, doi:10.1111/mec.12352.
Singer, M.C.; Parmesan, C. Phenological asychrony between herbivorous insects and their hosts: Signal of climate change or pre-existing adaptive strategy? Phil. Trans. R. Soc. B 2010, 365, 3161–3176, doi:10.1098/rstb.2010.0144.
[134]
Koricheva, J.; Larsson, S. Insect performance on experimentally stressed woody plants: A meta-analysis. Annu. Rev. Entomol. 1998, 43, 195–216, doi:10.1146/annurev.ento.43.1.195.
[135]
Kocmankova, E.; Trnka, M.; Eitzinger, J.; Dubrovsky, M.; Stepanek, P.; Semeradova, D.; Balek, J.; Skalak, P.; Farda, A.; Juroch, J.; et al. Estimating the impact of climate change on the occurrence of selected pests at high spatial resolution: A novel approach. J. Agric. Sci. 2011, 149, 185–195, doi:10.1017/S0021859610001140.
[136]
P?yry, J.; Leinonen, R.; S?derman, G.; Nieminen, M.; Heikkinen, R.K.; Carter, T.R. Climate-induced increase of moth multivoltinism in boreal regions. Glob. Ecol. Biogeogr. 2011, 20, 289–298, doi:10.1111/j.1466-8238.2010.00597.x.
[137]
Corbet, P.S.; Suhling, F.; Soendgerath, D. Voltinism in Odonata: A review. Intern. J. Odonatol. 2006, 9, 1–44, doi:10.1080/13887890.2006.9748261.
[138]
Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. Lon. B 2010, 277, 1281–1287, doi:10.1098/rspb.2009.1910.
[139]
Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026, doi:10.1126/science.1206432.
[140]
Carroll, S.P. Conciliation biology: The eco-evolutionary management of permanently invaded biotic systems. Evol. Appl. 2011, 4, 184–199, doi:10.1111/j.1752-4571.2010.00180.x.
[141]
Roderick, G.K.; Navajas, M. Genes in new environments: Genetics and evolution in biological control. Nat. Rev. Genet. 2003, 4, 883–899.
[142]
Thomas, C.D. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 2011, 26, 216–221, doi:10.1016/j.tree.2011.02.006.
[143]
Benton, M.J. Diversification and extinction in the history of life. Science 1995, 268, 52–58.
Feder, J.L.; Flaxmann, S.M.; Egan, S.P.; Nosil, P. Hybridization and the build-up of genomic divergence during speciation. J. Evol. Biol. 2013, 26, 261–266, doi:10.1111/jeb.12009.
[146]
Arnold, M.L.; Arnold, M.L. Natural Hybridization and Evolution; Oxford University Press: New York, NY, USA, 1997; p. 232.
[147]
Gavrilets, S.; Li, H.; Vose, M.D. Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. Lond. B 1998, 265, 1483–1489, doi:10.1098/rspb.1998.0461.
[148]
Thompson, J.N. The Geographic Mosaic of Coevolution; University Chicago Press: Chicago, IL, USA, 2005.
[149]
Ehrlich, P.R.; Raven, P.H. Butterflies and plants: A study in coevolution. Evolution 1964, 18, 586–608, doi:10.2307/2406212.
[150]
Scriber, J.M. Evolution of insect-plant relationships: Chemical constraints, coadaptation, and concordance of insect/plant traits. Entomol. Exp. Appl. 2002, 104, 217–235.
[151]
Berenbaum, M.R.; Feeny, P.P. Chemical mediation of host-plant specialization: The Papilio paradigm. In Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; California University Press: Berkeley, CA, USA, 2008; pp. 3–19.
[152]
Futuyma, D.J.; Agrawal, A.A. Macroevolution and biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. USA 2009, 106, 18054–18061, doi:10.1073/pnas.0904106106.
[153]
Nyman, T. To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol. Rev. 2010, 85, 393–411, doi:10.1111/j.1469-185X.2009.00109.x.
[154]
Janz, N. Ehrlich and Raven revisited: Mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 71–89, doi:10.1146/annurev-ecolsys-102710-145024.
[155]
Forister, M.L.; Dyer, L.A.; Singer, M.S.; Stireman, J.O.; Lill, J.T. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 2012, 93, 981–991, doi:10.1890/11-0650.1.
[156]
Janz, N.; Nylin, S. The oscillation hypothesis of host-plant range and speciation. In Speciation, Specialization, and Radiation: The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University California Press: Berkeley, CA, USA, 2008; pp. 203–215.
[157]
Nylin, S.; Janz, N. Butterfly host plant range: An example of plasticity as a promoter of speciation? Evol. Ecol. 2009, 23, 137–146, doi:10.1007/s10682-007-9205-5.
[158]
Fordyce, J.A. Host shifts and evolutionary radiations of butterflies. Proc. R. Soc. B 2010, 277, 3735–3743, doi:10.1098/rspb.2010.0211.
[159]
Dennis, R.L.H.; Dapporto, L.; Fattorini, S.; Cook, L.M. The generalism-specialism debate: The role of generalists in the life and death of species. Biol. J. Linn. Soc. 2011, 104, 725–737, doi:10.1111/j.1095-8312.2011.01789.x.
[160]
Loxdale, H.D.; Lushai, G.; Harvey, J.A. The evolutionary improbability of “generalism” in nature, with special reference to insects. Biol. J. Linn. Soc. 2011, 103, 1–18, doi:10.1111/j.1095-8312.2011.01627.x.
[161]
Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489–513, doi:10.1017/S1464793105006767.
[162]
Wilson, R.J.; Gutierrez, D.; Martinez, J.; Aguto, R.; Monserrat, V.J. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 2005, 8, 1138–1146, doi:10.1111/j.1461-0248.2005.00824.x.
[163]
Franco, A.M.A.; Hill, J.K.; Kitschke, C.; Collinham, Y.C.; Roy, D.B.; Fox, R.; Huntley, B.; Thomas, C.D. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Chang Biol. 2006, 12, 1545–1553, doi:10.1111/j.1365-2486.2006.01180.x.
[164]
Lewinsohn, R.C.; Roslin, T. Four ways towards tropical herbivore mega-diversity. Ecol. Lett. 2008, 11, 398–416, doi:10.1111/j.1461-0248.2008.01155.x.
Case, T.J.; Holt, R.D.; McPeek, M.A.; Keitt, T.H. The community context of species’ borders: Ecological and evolutionary perspectives. Oikos 2005, 108, 28–40, doi:10.1111/j.0030-1299.2005.13148.x.
[169]
Diniz-Filho, J.A.F.; deMarco, P.; Hawkins, B.A. Defying the curse of ignorance: Perspectives in insect macroecology and conservation biology. Insect Conserv. Divers. 2010, 3, 172–179.
[170]
Hawkins, B.A. Multiregional comparisons of the ecological and phylogenetic structure of butterfly species richness gradients. J. Biogeogr. 2010, 37, 647–656, doi:10.1111/j.1365-2699.2009.02250.x.
[171]
Hawkins, B.A.; DeVries, P.J. Tropical niche conservatism and species richness in North American butterflies. J. Biogeogr. 2009, 36, 1698–1711, doi:10.1111/j.1365-2699.2009.02119.x.
[172]
Parmesan, C.; Gaines, S.; Gonzalez, L.; Kaufman, D.M.; Kingslover, J.; Peterson, A.T.; Sagarin, R. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 2005, 108, 58–75, doi:10.1111/j.0030-1299.2005.13150.x.
[173]
Leather, S.R.; Bassett, Y.; Hawkins, B.A. Insect conservation: Finding the way forward. Insect Conserv. Divers. 2008, 1, 67–69, doi:10.1111/j.1752-4598.2007.00005.x.
[174]
Janzen, D.H. Why mountain passes are higher in the tropics. Am. Nat. 1967, 101, 233–249.
[175]
Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672.
[176]
Ghalambor, C.K.; Huey, R.B.; Martin, P.R.; Tewksbury, J.J.; Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 2006, 46, 5–17, doi:10.1093/icb/icj003.
[177]
Huey, R.B.; Tewksbury, J.J. Can behavior douse the fire of climate warming? Proc. Natl. Acad. Sci. USA 2009, 106, 3647–3648, doi:10.1073/pnas.0900934106.
[178]
Merila, J. Genetic constraints on adaptation. Science 2009, 325, 1212–1213, doi:10.1126/science.1179326.
[179]
Keller, I.; Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 2012, 21, 782–799, doi:10.1111/j.1365-294X.2011.05397.x.
[180]
Bonebrake, T.C.; Deutsch, C.A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 2012, 93, 449–455, doi:10.1890/11-1187.1.
[181]
Kellermann, V.; von Heerwaarden, B.; Sgrò, C.M.; Hoffmann, A.A. Fundamantal evolutionary limits in ecological traits drive Drosophila species distributions. Science 2009, 325, 1244–1246, doi:10.1126/science.1175443.
[182]
Gienapp, P.; Teplitsky, C.; Alho, J.A.; Mills, A.; Merila, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178, doi:10.1111/j.1365-294X.2007.03413.x.
[183]
Buckley, L.B.; Tewksbury, J.J.; Deutsch, C.A. Can terrestrial ectotherms escape the heat of climate change by moving? Proc. R. Soc. B Biol. Sci. 2013, 280, doi:10.1098/rspb.2013.1149.
[184]
Sheldon, K.S.; Yang, S.; Tewksbury, J.J. Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 2011, 14, 1191–1200, doi:10.1111/j.1461-0248.2011.01689.x.
[185]
Corlett, R.T. Climate change in the tropics: The end of the world as we know it? Biol. Conserv. 2012, 151, 22–25, doi:10.1016/j.biocon.2011.11.027.
[186]
Diamond, S.E.; Sorger, D.M.; Huler, J.; Pelini, S.L.; DelToro, I.; Hirsch, C.; Oberg, E.; Dunn, R. Who likes it hot? A global analysis of climate, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Chang. Biol. 2012, 18, 448–456, doi:10.1111/j.1365-2486.2011.02542.x.
[187]
Schemske, D.W.; Mittelbach, G.C.; Cornell, H.V.; Sobel, J.M.; Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Syst. 2009, 40, 245–269.
[188]
Mittlebach, G.C.; Schemske, D.W.; Cornell, H.V.; Allen, A.P.; Brown, J.M. Evolution and latitudinal diversity gradient: Speciation, extinction, and biogeography. Ecol. Lett. 2007, 10, 315–331, doi:10.1111/j.1461-0248.2007.01020.x.
[189]
Jablonski, D.; Roy, K.; Valentine, J.W. Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science 2006, 314, 102–106.
[190]
Novotny, V.; Drozd, D.; Miller, S.E.; Kulfan, M.; Janda, M.; Basset, Y.; Weiblen, G.O. Why are there so many species of herbivorous insects in tropical rainforests? Science 2006, 313, 1115–1118, doi:10.1126/science.1129237.
[191]
Becerra, J.X.; Venable, D.L. Macroevolution of insect-plant associations: The relevance of host biogeography to host affiliation. Proc. Natl. Acad. Sci. USA 1999, 96, 12625–12631.
[192]
Winkler, I.S.; Mitter, C.; Scheffer, S.J. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc. Natl. Acad. Sci. USA 2009, 106, 18103–18108, doi:10.1073/pnas.0904852106.
[193]
Condamine, F.L.; Sperling, F.A.X.; Wahlberg, N.; Rasplus, J.-Y.; Kergoat, G.J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 2012, 15, 267–277, doi:10.1111/j.1461-0248.2011.01737.x.
[194]
Slansky, F., Jr. Latitudinal gradients in species diversity of the new world swallowtail butterflies. J. Res. Lepidopt. 1972, 11, 201–207.
[195]
Scriber, J.M. Latitudinal gradients in larval feeding specialization of the world Papilionidae. Psyche 1973, 80, 355–373, doi:10.1155/1973/52610.
[196]
Scriber, J.M. Larval foodplant utilization by the world Papilionidae (Lep.): Latitudinal gradients reappraised. Tokurana (Acta Rhopalocerol.) 1984, 6/7, 1–50.
[197]
Dyer, L.A.; Singer, M.S.; Lill, J.T.; Stireman, J.O.; Gentry, G.L.; Marquis, R.J.; Ricklefs, R.E.; Greeney, H.F.; Wagner, D.L.; Morais, H.C.; et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature 2007, 448, 696–700, doi:10.1038/nature05884.
[198]
Simonson, T.J.; Zakharov, E.V.; Djernaes, M.; Cotton, A.M.; Vane-Wright, R.I.; Sperling, F.A.H. Phylogenies and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 2011, 27, 113–137, doi:10.1111/j.1096-0031.2010.00326.x.
[199]
Collins, N.M.; Morris, M.G. Threatened Swallowtail Butterflies of the World: The IUCN Red Data Book; International Union for Conservation of Nature and Natural Resources: Cambridge, UK, Gland, Switzerland, 1985.
[200]
Scriber, J.M.; Lederhouse, R.C.; Hagen, R.H. Foodplants and evolution within the Papilio glaucus and Papilio troilus species groups (Lepidoptera: Papilionidae). In Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions; Price, P.W., Lewinsohn, T.M., Fernades, G.W., Benson, W.W., Eds.; John Wiley: New York, NY, USA, 1991; pp. 341–373.
[201]
Lehnert, M.; Scriber, J.M. Salicaceae detoxification abilities in Florida swallowtail butterflies (Papilio glaucus maynardi Gauthier): Novel ability or Pleistocene holdover? Insect Sci. 2012, 19, 337–345, doi:10.1111/j.1744-7917.2011.01459.x.
[202]
Zakharov, E.V.; Caterino, M.S.; Sperling, F.A.H. Molecular phylogeny, historical biogeography, and divergence times estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 2004, 53, 193–215, doi:10.1080/10635150490423403.
[203]
Nylin, S.; Wahlberg, N. Does plasticity drive speciation? Host-plant shifts and diversification in nymphaline butterflies (Lepidoptera: Nymphalidae) during the tertiary. Biol. J. Linn. Soc. 2008, 94, 115–130, doi:10.1111/j.1095-8312.2008.00964.x.
[204]
Scriber, J.M.; Larsen, M.L.; Allen, G.R.; Walker, P.W.; Zalucki, M.P. Interactions between Papilionidae and ancient Australian Angiosperms: Evolutionary specialization or ecological monophagy in the Papilionidae? Ent. Expt. Appl. 2008, 128, 230–239, doi:10.1111/j.1570-7458.2008.00691.x.
[205]
Nosil, P. Transition rates between specialization and generalization on phytophagous insects. Evolution 2002, 56, 1701–1706.
[206]
Pateman, R.M.; Hill, J.K.; Roy, D.B.; Fox, R.; Thomas, C.D. Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science 2012, 336, 1028–1030, doi:10.1126/science.1216980.
[207]
Kelly, S.T.; Farrel, D.B. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 1998, 52, 1731–1743, doi:10.2307/2411346.
[208]
Pelini, S.L.; Keppel, J.A.; Kelly, A.E.; Hellmann, J.J. Adaptation to host plants may prevent rapid insect responses to climate change. Glob. Chang. Biol. 2010, 16, 2923–2929.
[209]
Nitao, J.K.; Ayres, M.P.; Lederhouse, R.C.; Scriber, J.M. Larval adaptation to lauraceous hosts: Geographic divergence in the spicebush swallowtail butterflies. Ecology 1991, 72, 1428–1435, doi:10.2307/1941115.
[210]
Lederhouse, R.C.; Ayres, M.P.; Nitao, J.K.; Scriber, J.M. Differential use of lauraceous hosts by swallowtail butterflies, Papilio troilus and P. palamedes (Papilionidae). Oikos 1992, 63, 244–252, doi:10.2307/3545384.
[211]
Li, W.; Schuler, M.A.; Berenbaum, M.R. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate. Proc. Natl. Acad. Sci. USA 2003, 100, 14593–14595, doi:10.1073/pnas.1934643100.
[212]
Cohen, M.B.; Schuler, M.A.; Berenbaum, M.R. Host-inducible cytochrome P450 from a host-specific caterpillar: Molecular cloning and evolution. Proc. Natl. Acad. Sci. USA 1992, 89, 10920–10924, doi:10.1073/pnas.89.22.10920.
Dewar, R.C.; Watt, A.D. Predicting changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 1992, 89, 557–559.
[215]
Franks, S.J.; Sim, S.; Weis, A.E. Rapid evolution of flowering time by an annual plant in response to climate fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282, doi:10.1073/pnas.0608379104.
[216]
Niemel?, P.; Mattson, W.J. Invasion of North American forests by European phytophagous insects. Bioscience 1996, 46, 741–753, doi:10.2307/1312850.
Scriber, J.M. Latitudinal and local geographic mosaics in host plant preferences as shaped by thermal units and voltinism in Papilio spp. (Lepidoptera). Eur. J. Entomol. 2002, 99, 225–239.
[220]
Best, A.S.; Johst, K.; Munkemuller, T.; Travis, J.M.J. Which species will successfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos 2007, 116, 1531–1539.
[221]
Urban, M.C.; deMeester, L.; Vellend, M.; Stoks, R.; Vanoverbeke, J. A critical step toward realism: Responses to climate change from an evolving metacommunity perspective. Evol. Appl. 2012, 5, 154–167, doi:10.1111/j.1752-4571.2011.00208.x.
[222]
Cahill, A.E.; Aiello-Lammens, M.E.; Fisher-Reid, M.C.; Hua, X.; Karanewsky, C.J.; Ryu, H.Y.; Sbeglia, G.C.; Spagnolo, F.; Waldron, J.B.; Warsi, O.; et al. How does climate change cause extinction? Proc. R. Soc. B 2013, 280, doi:10.1098/rspb.2012.1890.
[223]
Marsico, T.D.; Burt, J.W.; Espeland, E.K.; Gilchrist, G.W.; Jamieson, M.A.; Lindstr?m, L.; Roderick, G.K.; Swope, S.; Szücs, M.; Tsutsui, N.D. Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases. Evol. Appl. 2010, 3, 203–219, doi:10.1111/j.1752-4571.2009.00101.x.
[224]
Shea, K.; Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 2002, 17, 170–176, doi:10.1016/S0169-5347(02)02495-3.
[225]
Scriber, J.M. Non-target impacts of forest defoliator management options: Decision for no spraying may have worse impacts on non-target Lepidoptera than Bacillus thuringiensis insecticides. J. Insect Conserv. 2004, 8, 241–261, doi:10.1023/B:JICO.0000045822.15349.cf.
[226]
Strauss, S.Y.; Lau, J.A.; Carroll, S.P. Evolutionary responses of natives to introduced species: What do introductions tell us about natural communities? Ecol. Lett. 2006, 9, 354–371.
[227]
Gandhi, K.J.K.; Herms, D.A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invas. 2009, 20, doi:10.1007/s10530-009-9627-9.
[228]
Both, C.; van Asch, M.; Bijlsma, R.G.; van den Burg, A.B.; Visser, M.E. Climate change and unequal phenological changes across four trophic levels: Constrants and adaptations. J. Anim. Ecol. 2009, 78, 73–83, doi:10.1111/j.1365-2656.2008.01458.x.
[229]
Thomson, L.J.; MacFadgen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Contr. 2010, 52, 296–306, doi:10.1016/j.biocontrol.2009.01.022.
[230]
Moorcroft, P.R.; Pacala, S.W.; Lewis, M.A. Potential role of natural enemies during tree range expansions following climate change. J. Theor. Biol. 2006, 241, 601–616, doi:10.1016/j.jtbi.2005.12.019.
[231]
Menendez, R.; González-Megías, A.; Lewis, O.T.; Shaw, M.R.; Thomas, C.D. Escape from natural enemies during climate-driven range expansions: A case study. Ecol. Entomol. 2008, 33, 413–421, doi:10.1111/j.1365-2311.2008.00985.x.
[232]
Schierenbeck, K.A.; Ellstrand, N.C. Hybridization and the evolution of invasiveness in plants and other organisms. Biol. Invas. 2009, 11, 1093–1105.
[233]
Becks, L.; Ellner, S.P.; Jones, L.E.; Hairston, N.G. Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol. Lett. 2010, 13, 989–997.
Pearse, I.S.; Altermatt, F. Predicting novel trophic interactions in a non-native world. Ecol. Lett. 2013, 16, 1088–1094, doi:10.1111/ele.12143.
[236]
Mattson, W.J.; Vanhanen, H.; Veteli, T.; Sivonen, S.; Niemel?, P. Few immigrant phytophagous insects on woody plants in Europe: Legacy of the European crucible? Biol. Invas. 2007, 9, 957–974, doi:10.1007/s10530-007-9096-y.
[237]
Boettner, G.H.; Elkinton, J.S.; Boettner, C.J. Effects of a biological control introduction on three nontarget native species of saturniid moths. Cons. Biol. 2000, 14, 524–531.
[238]
Elkinton, J.S.; Liebhold, A.M. Population dynamics of the gypsy moth in North America. Annu. Rev. Entomol. 1990, 35, 571–596, doi:10.1146/annurev.en.35.010190.003035.
[239]
Johnson, K.S.; Scriber, J.M.; Nitao, J.N.; Smitley, D.R. Toxicity of Bacillus thuringiensis var. kurstaki to three non-target Lepidoptera in field studies. Environ. Entomol. 1995, 24, 288–297.
[240]
Sample, B.E.; Butler, L.; Zivkovich, C.; Whitmore, R.C.; Reardon, R. Effects of Bacillus thuringiensis Berliner var. kurstaki and defoliation by gypsy moth (Lymantria dispar (L.), Lepidoptera: Lymantriidae) on native arthropods in West Virginia. Can. Entomol. 1996, 128, 573–592, doi:10.4039/Ent128573-4.
[241]
Rastall, K.; Kondo, V.; Strazanac, J.S.; Butler, L. Lethal effects of biological insecticide applications on non-target lepidopterans in two Appalachian forests. Environ. Entomol. 2003, 32, 1364–1369, doi:10.1603/0046-225X-32.6.1364.
[242]
Redman, A.; Scriber, J.M. Competition between gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: Interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia 2000, 125, 218–228, doi:10.1007/s004420000444.
Soga, M.; Yamaura, Y.; Koike, S. From ecological pessimism to conservation change: Reviving living dead in changing landscapes. Anim. Conserv. 2013, 16, 16–18, doi:10.1111/acv.12027.
[245]
Pimentel, D.; Lach, L.; Zuniga, R.; Morrison, D. Environmental and economic costs associated with non-indigenous species in the United States. Bioscience 2000, 50, 53–65, doi:10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2.
[246]
Lindroth, R.L.; Scriber, J.M.; Hsia, M.T.S. Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides. Ecology 1988, 69, 814–822, doi:10.2307/1941031.
[247]
Herms, D.; Mattson, W.J. The dilemma of plants: To grow or defend. Quart. Rev. Biol. 1992, 67, 283–335.
[248]
Scriber, J.M.; Lindroth, R.L.; Nitao, J.K. Differential toxicity of a phenolic glycoside from quaking aspen to Papilio glaucus butterfly species, subspecies, hybrids and backcrosses. Oecologia 1989, 81, 186–191.
[249]
Scriber, J.M.; Weir, K.; Parry, D.; Deering, J. Using hybrid and backcross larvae of Papilio canadensis and Papilio glaucus to detect induced phytochemical resistance in hybrid Poplar trees experimentally dfoliated by gypsy moths. Ent. Exp. Appl. 1999, 91, 233–236.
[250]
Craig, T.P.; Itami, J.K.; Ohgushi, T.; Ando, Y.; Utsumi, S. Bridges and barriers to host shifts resulting from host plant genotypic variation. J. Plant Interact. 2011, 6, 141–145, doi:10.1080/17429145.2010.545148.
[251]
Cavender-Bares, J.; Kozak, K.H.; Fine, P.V.A.; Kemberyl, S.W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 2009, 12, 693–715, doi:10.1111/j.1461-0248.2009.01314.x.
[252]
Agosta, S.J.; Janz, N.; Brooks, D.R. How specialists can be generalists: Resolving the “parasite paradox” and implications for emerging infectious disease. Zoologia 2011, 27, 151–162, doi:10.1590/S1984-46702010000200001.
[253]
Utsumi, S. Evolutionary community ecology of plant-associated arthropods in terrestrial ecosystems. Ecol. Res. 2013, 28, 359–371, doi:10.1007/s11284-013-1042-0.
[254]
Zvereva, E.L.; Kozlov, M.V. Responses of terrestrial arthropods to air pollution: A meta-analysis. Environ. Sci. Pollut. Res. 2010, 17, 297–311, doi:10.1007/s11356-009-0138-0.
[255]
Gross, J.; Fatouros, N.E.; Neuvonen, S.; Hilker, M. The importance of specialist natural enemies for Chrysolmela lapponica in pioneering a new host plant. Ecol. Entomol. 2004, 29, 584–593, doi:10.1111/j.0307-6946.2004.00632.x.
[256]
Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Thermal tolerance and global redistribution of animals. Nat. Clim. Chang 2012, 2, 686–690.
[257]
Fox, L.R.; Morrow, P.A. Specialization-species property or local phenomenon. Science 1981, 211, 887–893.
[258]
Gourbieres, S.; Mallet, J. Are species real: The shape of the species boundary with expanded failures, reinforcement, and the missing snowball. Evolution 2010, 64, 1–24, doi:10.1111/j.1558-5646.2009.00844.x.
Emelianov, I.; Marec, F.; Mallet, J. Genomic evidence for divergence with gene flow in host races of the larcxh budmoth. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 97–105, doi:10.1098/rspb.2003.2574.
[261]
Xue, H.-J.; Li, W.-Z.; Nie, R.-E.; Yang, X.-K. Recent speciation in three closely related sympatric specialists: Inferences using multi-locus sequence, post-mating isolation and endosymbiont data. PLoS One 2011, 6, e27834.
[262]
Stireman, J.O.; Devlin, H.; Abbot, P. Rampant host- and defensive phenotype-associated differentiation in a goldenrod gall midge. J. Evol. Biol. 2012, 25, 1991–2004, doi:10.1111/j.1420-9101.2012.02576.x.
[263]
Mikheyev, A.S.; McBride, C.S.; Mueller, U.G.; Parmesan, C.; Smee, M.R.; Stefenscu, C.; Wee, B.; Singer, M.C. Host-associated genomic differentiation in congeneric butterflies: Now you see it, now you do not. Mol. Ecol. 2013, 22, 4753–4766, doi:10.1111/mec.12423.
[264]
McBride, C.S.; van Velzen, R.; Larsen, T.B. Allopatric origin of cryptic butterfly species that were discovered feeding on distinct host plants in sympatry. Mol. Ecol. 2009, 18, 3639–3651, doi:10.1111/j.1365-294X.2009.04309.x.
[265]
Mercader, R.J.; Aardema, M.L.; Scriber, J.M. Hybridization leads to host-use divergence in a polyphagous butterfly sibling species pair. Oecologia 2009, 158, 651–662, doi:10.1007/s00442-008-1177-9.
Nolte, A.W.; Tautz, D. Understanding the onset of hybrid speciation. Trends Ecol. Evol. 2010, 26, 54–58.
[268]
Mullen, S.P.; Dopman, E.B.; Harrison, R.G. Hybrid zone origins, species boundaries, and the evolution of wing-pattern diversity in a polytypic species complex of North American Admiral butterflies (Nymphalidae: Limenitis). Evolution 2008, 62, 1400–1417, doi:10.1111/j.1558-5646.2008.00366.x.
[269]
Macholán, M.; Baird, S.J.E.; Dufková, P.; Munclinger, P.; Bimová, B.V.; Piálek, J. Assessing multilocus introgression patterns: A case study on the mouse X chromosome in central Europe. Evolution 2011, 65, 1428–1446, doi:10.1111/j.1558-5646.2011.01228.x.
[270]
Nachman, M.W.; Payseur, B.A. Recombination rate variation and speciation: Theoretical predictions and empirical results from rabbits and mice. Phil. Trans. R. Soc. B Biol. Sci. 2012, 367, 409–421, doi:10.1098/rstb.2011.0249.
[271]
Carneiro, M.; Baird, S.J.E.; Afonso, S.; Ramirez, E.; Tarroso, P.; Teotonio, H.; Villafuerte, R.; Nachman, M.W.; Ferrand, N. Step clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol. Ecol. 2013, 22, 2511–2525, doi:10.1111/mec.12272.
[272]
Sperling, F.A.H. Butterfly Molecular Systematics: From Species Definitions to Higher Level Phylogenies. In Butterflies: Ecology and Evolution Taking Flight; Boggs, C.L., Watt, W.B., Ehrlich, P.R., Eds.; University Chicago Press: Chicago, IL, USA, 2003; pp. 431–458.
[273]
Hendry, A.P.; Bolnick, D.I.; Berner, D.; Peichel, C.L. Along the speciation continuum in sticklebaclks. J. Fish Biol. 2009, 75, 2000–2036, doi:10.1111/j.1095-8649.2009.02419.x.
[274]
Mallet, J. A species definition for the modern synthesis. Trends Ecol. Evol. 2005, 10, 294–299, doi:10.1016/0169-5347(95)90031-4.
[275]
Mallet, J.; Beltrán, M.; Neukirchen, W.; Linares, M. Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evol. Biol. 2007, 7, 28, doi:10.1186/1471-2148-7-28.
[276]
Dopman, E.B.; Perez, L.; Bogdanowicz, S.M.; Harrison, R.G. Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proc. Natl. Acad. Sci. USA 2005, 102, 14706–14711.
[277]
Dopman, E.B.; Robbins, P.S.; Seaman, A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evolution 2010, 64, 881–902, doi:10.1111/j.1558-5646.2009.00883.x.
[278]
Nosil, P.; Harmon, L.J.; Seehausen, O. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. 2009, 24, 145–156, doi:10.1016/j.tree.2008.10.011.
[279]
Smadja, C.M.; Butlin, R.K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 2011, 20, 5123–5140, doi:10.1111/j.1365-294X.2011.05350.x.
[280]
Nosil, P.; Feder, J.L. Genomic divergence during speciation: Causes and consequences. Phil. Trans. R. Soc. B 2012, 367, 332–342, doi:10.1098/rstb.2011.0263.
[281]
Hagen, R.H.; Scriber, J.M. Sex chromosomes and speciation in the Papilio glaucus group. In Swallowtail Butterflies: Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.C., Eds.; Scientific Publishers, Inc.: Gainesville, FL, USA, 1995; pp. 211–228.
[282]
Lee, Y.; Collier, T.C.; Sanford, M.R.; Marsden, C.D.; Fofana, A.; Comel, A.J.; Lanzaro, G.C. Chromosome inversions, genomic differentiation and speciation in the African malaria mosquito, Anopheles gambia. PLoS One 2013, 8, e5787.
[283]
Sperling, F.A.H. Sex-linked genes and species differences in Lepidoptera. Can. Entomol. 1994, 126, 807–818, doi:10.4039/Ent126807-3.
[284]
Pashley-Prowell, D. Sex Linkage and Speciation in Lepidoptera. Endless Forms: Species and Speciation; Howard, D.J., Berlocher, S.H., Eds.; Oxford University Press: New York, NY, USA, 1998; pp. 309–319.
[285]
Elgvin, T.O.; Hermansen, J.S.; Fijarczyk, A.; Bonnet, T.; Borge, T.; Saether, S.A.; Voje, K.L.; Saetre, G.-P. Hybrid speciation in sparrows II: A role for sex chromosomes? Mol. Ecol. 2011, 20, 3823–3837, doi:10.1111/j.1365-294X.2011.05182.x.
[286]
Rauch, E.M.; Bar-Yam, Y. Theory predicts the uneven distribution of genetic diversity within species. Nature 2004, 431, 449–450, doi:10.1038/nature02745.
[287]
Eckert, C.G.; Samis, K.E.; Lougheed, S.C. Genetic variation across species’ geographic ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 2008, 17, 1170–1188, doi:10.1111/j.1365-294X.2007.03659.x.
[288]
Thompson, J.D.; Gaudeul, M.; Debusasche, M. Conservation value of sites of hybridization in peripheral populations of rare plant species. Conserv. Biol. 2009, 24, 236–245, doi:10.1111/j.1523-1739.2009.01304.x.
[289]
Lopez-Pujol, J.; Garcia-Jacas, N.; Susanna, A.; Vilatersana, R. Should we conserve pure species or hybrid species? Delimiting hybridization and introgression in the Iberian endemic Centaurea podospermifolia. Biol. Conserv. 2012, 152, 271–279, doi:10.1016/j.biocon.2012.03.032.
[290]
Cozzolino, S.; Naqrdella, A.M.; Impagliazzo, S.; Widmer, A.; Lexer, C. Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones? Biol. Conserv. 2005, 129, 14–23.
[291]
Hill, J.K.; Hughes, C.L.; Dytham, C.; Searle, J.B. Genetic diversity in butterflies: Interactive effects of habitat fragmentation and climate-driven range expansion. Biol. Lett. 2009, 2, 152–154.
[292]
Pelini, S.L.; Dzurisin, J.D.K.; Prior, K.M.; Williams, C.M.; Marisco, T.D.; Sinclair, B.J.; Hellmann, J.J. Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 11160–11165, doi:10.1073/pnas.0900284106.
[293]
Kotiaho, J.S.; Kaitala, V.; Komonen, A.; P?ivien, J. Predicting the risk of extinction from shared ecological characteristics. Proc. Natl. Acad. Sci. USA 2005, 102, 1963–1967, doi:10.1073/pnas.0406718102.
[294]
Mattila, N.; Kaitala, V.; Komonen, A.; P?ivinen, J.; Kotiaho, J.S. Ecological correlates of distribution change and range shift in butterflies. Insect Conserv. Divers. 2011, 4, 239–246, doi:10.1111/j.1752-4598.2011.00141.x.
[295]
Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 2002, 51, 238–254, doi:10.1080/10635150252899752.
[296]
Mace, G.M.; Purvis, A. Evolutionary biology and practical conservation: Bridging a widening gap. Mol. Ecol. 2008, 17, 9–19, doi:10.1111/j.1365-294X.2007.03455.x.
[297]
Sagarin, R.D.; Gaines, S.D.; Gaylord, B. Moving beyond assumptions to understand abundance distributions across ranges of species. Trends Ecol. Evol. 2006, 21, 524–530, doi:10.1016/j.tree.2006.06.008.
[298]
McGill, B.; Collins, C. A unified theory for macroecology based on spatial patterns of abundance. Evol. Ecol. Res. 2003, 5, 469–492.
[299]
Van Heerewaarden, B.; Kellermann, V.; Schiffer, M.; Blacker, M.; Sgro, C.M.; Hoffmann, A.A. Testing evolutionary hypotheses about species borders: Patterns of genetic variation towards the southern borders of two rainforest Drosophila and a related habitat generalist. Proc. R. Soc. B 2009, 276, 1517–1526, doi:10.1098/rspb.2008.1288.
[300]
Weeks, A.R.; Sgro, C.; Young, A.G.; Frankham, R.; Mitchell, N.J.; Miller, K.A.; Byrne, M.; Coates, D.J.; Eldridge, M.D.B.; Sunnucks, P.; et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 2011, 4, 709–725, doi:10.1111/j.1752-4571.2011.00192.x.
[301]
Avise, J.C. The history and purview of phylogeography: A personal reflection. Mol. Ecol. 1998, 7, 371–379, doi:10.1046/j.1365-294x.1998.00391.x.
[302]
Hewitt, G.M. Speciation, hybrid zones and phylogeography- or seeing genes in space and time. Mol. Ecol. 2001, 10, 537–549, doi:10.1046/j.1365-294x.2001.01202.x.
[303]
Cooper, V.S.; Bennett, A.F.; Lenski, R.E. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations of a constant environment. Evolution 2001, 55, 889–896, doi:10.1554/0014-3820(2001)055[0889:EOTDOG]2.0.CO;2.
[304]
Maughan, H.; Masel, J.; Birky, C.W.; Nicholson, W.L. The roles of mutation accumulation and selection in loss of sporulation in experimental populations of Bacillus subtilis. Genetics 2007, 177, 937–948, doi:10.1534/genetics.107.075663.
[305]
Hoffmann, A.A. A genetic perspective on insect climate specialists. Aust. J. Entomol. 2010, 49, 93–103, doi:10.1111/j.1440-6055.2010.00744.x.
[306]
Bonebrake, T.C. Conservation implications of adaptation to tropical climates from a historical perspective. J. Biogeogr. 2013, 40, 409–414, doi:10.1111/jbi.12011.
[307]
Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B 2011, 278, 1823–1830, doi:10.1098/rspb.2010.1295.
[308]
Scriber, J.M.; Keefover, K.; Nelson, S. Hot summer temperatures may stop movement of Papilio canadensis butterflies and genetic introgression south of the hybrid zone in the North American Great Lakes region. Ecography 2002, 25, 184–192, doi:10.1034/j.1600-0587.2002.250206.x.
[309]
Mercader, R.J.; Scriber, J.M. Diversification of host use in two polyphagous butterflies: Differences in oviposition specificity or host rank hierarchy. Ent. Exp. Appl. 2007, 125, 89–101, doi:10.1111/j.1570-7458.2007.00598.x.
[310]
Mercader, R.J.; Scriber, J.M. Divergence of ovipositional behavior in the Papilio glaucus group. Insect Sci. 2008, 15, 361–367, doi:10.1111/j.1744-7917.2008.00222.x.
[311]
Mercader, R.J.; Scriber, J.M. Asymmetrical thermal constraints on the parapatric species boundaries of two widespread generalist butterflies. Ecol. Entom. 2008, 33, 537–545, doi:10.1111/j.1365-2311.2008.01001.x.
[312]
Scriber, J.M.; Sonke, B. Effects of diurnal temperature range on adult size and emergence time from diapausing pupae in Papilio glaucus and P. canadensis (Papilionidae). Insect Sci. 2011, 18, 435–442, doi:10.1111/j.1744-7917.2011.01432.x.
[313]
Williams, C.M.; Marshall, K.E.; MacMillan, H.A.; Dzurisin, J.D.K.; Hellmann, J.J.; Sinclair, B.J. Thermal variability increases the impact of Autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS One 2012, 7, e34470.
[314]
Williams, C.M.; Hellmann, J.J.; Sinclair, B.J. Lepidopteran species differ in susceptibility to winter warming. Clim. Res. 2012, 53, 119–130, doi:10.3354/cr01100.
[315]
Hurrell, J.W. Decadal trends in North Atlantic oscillation region temperatures and precipitation. Science 1995, 269, 676–679.
[316]
Higgins, R.W.; Leetma, A.; Kousky, V.E. Relationships between climate variability and winter temperature extremes in the United States. J. Clim. 2002, 15, 1555–1572, doi:10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2.
[317]
Gu, L.; Hanson, P.J.; Pool, W.M.; Kaiser, D.P.; Yang, B.; Nemani, R.; Pallardy, S.G.; Meyers, T. The 2007 Eastern USA Spring freeze: Increased cold damage in a warming world. BioScience 2008, 58, 253–262, doi:10.1641/B580311.
[318]
LePage, M. Wild winters. New Sci. 2011, 212, 42–44.
[319]
Kukal, O.; Ayres, M.P.; Scriber, J.M. Cold tolerance of pupae in relation to the distribution of tiger swallowtails. Can. J. Zool. 1991, 69, 3028–3037, doi:10.1139/z91-427.
[320]
Tesar, D.; Scriber, J.M. Growth season constraints in climatic cold pockets: Tolerance of subfreezing temperatures and compensatory growth by tiger swallowtail butterfly larvae (Lepidoptera: Papilionidae). Holarctic Lepidopt. 2005, 7, 39–44.
[321]
Roland, J.; Matter, S.F. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly. Ecology 2012, 94, 190–199, doi:10.1890/12-0611.1.
[322]
P?yry, J.; Luoto, M.; Heikinnen, R.K.; Kuussaari, M.; Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Chang Biol. 2009, 15, 732–743, doi:10.1111/j.1365-2486.2008.01789.x.
[323]
Wilson, R.J.; Gutierrez, D.; Gutierrez, J.; Monserrat, V.J. An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Chang Biol. 2007, 13, 1873–1887, doi:10.1111/j.1365-2486.2007.01418.x.
[324]
Turlure, C.; Choutt, J.; Baguette, M.; van Dyck, H. Microclimatic buffering and resource-based habitat in a glacial relic butterfly: Significance for conservation under climate change. Glob. Chang Biol. 2010, 16, 1883–1893.
[325]
Matter, S.F.; Doyle, A.; Illerbrun, K.; Wheeler, J.; Rolands, J. An assessment of direct and indirect effects of climate change for populations of the Rocky Mountain Apollo butterfly (Parnassius smintheus Doubleday). Insect Sci. 2011, 18, 385–392, doi:10.1111/j.1744-7917.2011.01407.x.
[326]
Scriber, J.M.; Stump, A.; Deering, M. Hybrid zone ecology and tiger swallowtail trait clines in North America. In Ecology and Evolution Taking Flight: Butterflies as Model Study Systems; Boggs, C., Watt, W., Ehrlich, P., Eds.; University of Chicago Press: Chicago, IL, USA, 2003; pp. 367–391.
[327]
Scriber, J.M.; Maher, E.; Aardema, M.L. Differential effects of short term winter thermal stress on diapausing tiger swallowtail butterflies (Papilio spp.). Insect Sci. 2012, 19, 277–285, doi:10.1111/j.1744-7917.2011.01477.x.
[328]
Scriber, J.M.; Lederhouse, R.C. In the thermal environment as a resource dictating geographic patterns of feeding specialization of insect herbivores. In Effects of Resource Distribution on Animal–Plant Interactions; Hunter, M.R., Ohgushi, T., Price, P.W., Eds.; Academic Press: New York, NY, USA, 1992; pp. 429–466.
[329]
Remington, C.L. Suture zones of hybrid interaction between recently joined biotas. In Evolutionary Biology; Dobzhanski, T., Hecht, M.K., Steere, W.C., Eds.; Plenum Press: New York, NY, USA, 1968; pp. 321–348.
[330]
Luebke, H.J.; Scriber, J.M.; Yandell, B.S. Use of multivariate discriminant analysis of male wing morphometrics to delineate a hybrid zone for Papilio glaucus glaucus and P. g. canadensis in Wisconsin. Am. Midl. Nat. 1988, 119, 366–379, doi:10.2307/2425819.
[331]
Swensen, N.G.; Howard, D.J. Do suture zones exist? Evolution 2004, 58, 2391–2397.
[332]
Hagen, R.H.; Lederhouse, R.C.; Bossart, J.L.; Scriber, J.M. Papilio canadensis and P. glaucus (Papilionidae) are distinct species. J. Lepid. Soc. 1991, 45, 245–258.
[333]
Scriber, J.M.; Lederhouse, R.C. Temperature as a factor in the development and feeding ecology of tiger swallowtail caterpillars, Papilio glaucus. Oikos 1983, 40, 95–102, doi:10.2307/3544203.
[334]
Ayres, M.P.; Scriber, J.M. Local adaptations to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecol. Monogr. 1994, 64, 465–482, doi:10.2307/2937146.
[335]
Scriber, J.M. Climatic legacies and sex chromosomes: Latitudinal patterns of voltinism, diapause, size and host-plant selection in 2 species of swallowtail butterflies at their hybrid zone. In Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control; Danks, H.V., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 133–171.
[336]
Scriber, J.M. A new cold pocket hypothesis to explain local host preference shifts in Papilio canadensis. Entomol. Exp. Appl. 1996, 80, 315–319, doi:10.1111/j.1570-7458.1996.tb00943.x.
[337]
Rockey, S.J.; Hainze, J.H.; Scriber, J.M. Evidence of a sex linked diapause response in Papilio glaucus subspecies and their hybrids. Physiol. Entomol. 1987, 12, 181–184, doi:10.1111/j.1365-3032.1987.tb00740.x.
[338]
Rockey, S.J.; Hainze, J.H.; Scriber, J.M. A latitudinal and obligatory diapause response in three subspecies of the eastern tiger swallowtail Papilio glaucus (Lepidoptera: Papilionidae). Am. Midl. Nat. 1987, 118, 162–168, doi:10.2307/2425639.
[339]
Eichenlaub, V.L.; Harman, J.R.; Nurnberger, F.V.; Stolle, H.J. The Climatic Atlas of Michigan; Notre Dame Press: Notre Dame, IN, USA, 1990; p. 165.
[340]
Scriber, J.M.; Ording, G.J.; Mercader, R.J. Hybrid introgression and parapatric speciation in a hybrid zone. In Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University California Press: Berkeley, CA, USA, 2008; pp. 69–87.
[341]
Higaki, M.; Toyama, M. Evidence for reversible change in the intensity of prolonged diapause in the Chestnut weevil, Curculio sikkimensis. J. Insect Physiol. 2012, 58, 56–60, doi:10.1016/j.jinsphys.2011.09.014.
[342]
Feder, J.L.; Roethele, J.B.; Wlazlo, B.; Berlocher, S.H. Selective maintenance of allozyme dfferences among sympatric host races of the apple maggot fly. Proc. Natl. Acad. Sci. USA 1997, 94, 11417–11421, doi:10.1073/pnas.94.21.11417.
[343]
Feder, J.L.; Stolz, U.; Lewis, K.M.; Perry, W.; Roethele, J.B.; Rogers, A. The effects of winter length on the genetics of apple and hawthorn races of Rhagoletis pomonella (Diptera: Tephritidae). Evolution 1997, 51, 1862–1876, doi:10.2307/2411008.
[344]
Masaki, S. Ecophysiological consequences of variability of diapause intensity. Eur. J. Entomol. 2002, 99, 143–154.
[345]
Lehnert, M.S.; Scriber, J.M.; Gerard, P.D.; Emmel, T.C. The “converse of Bergmann’s Rule” in tiger swallowtail butterflies; Boundaries of species and subspecies wing traits are independent of thermal and host-plant induction. Am. Entom. 2012, 58, 156–165.
[346]
Donovan, J.; Scriber, J.M. Detection and verification of a primary natural hybridization event between two tiger swallowtail butterfly species in northern Michigan. J. Lepid. Soc. 2003, 57, 25–35.
[347]
Moczek, A.P. Phenotypic plasticity and diversity in insects. Phil. Trans. R. Soc. B Biol. Sci. 2010, 365, 593–603, doi:10.1098/rstb.2009.0263.
[348]
Schwander, T.; Leimar, O. Genes as leaders and followers in evolution. Trends Ecol. Evol. 2011, 26, 143–151, doi:10.1016/j.tree.2010.12.010.
[349]
Bonduriansky, R.; Crean, A.J.; Day, T. The implications of nongenetic inheritance for evolution in changing environments. Evol. Applic. 2012, 5, 192–201, doi:10.1111/j.1752-4571.2011.00213.x.
Koevoets, T.; vande Zande, L.; Beukeboom, L.W. Temperature stress increases hybrid incompatibilities in the parasitic wasp genus Nasonia. J. Evol. Biol. 2011, 25, 304–316.
[352]
Arnold, M.L.; Martin, N.H. Adaptation by introgression. J. Biol. 2009, 8, 82, doi:10.1186/jbiol176.
[353]
Arnold, M.L.; Hodges, S.A. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 1995, 10, 67–71, doi:10.1016/S0169-5347(00)88979-X.
[354]
Baskett, M.L.; Gomulkiewicz, R. Introgressive hybridization as a mechanism for species rescue. Theoret. Ecol. 2011, 4, 223–239, doi:10.1007/s12080-011-0118-0.
Balanya, J.; Oller, J.M.; Huey, R.B.; Gilchrist, G.W.; Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 2006, 313, 1773–1775, doi:10.1126/science.1131002.
[357]
Gluesenkamp, D.; Chasse, M.; Frey, M.; Parker, V.T.; Vasey, M.; Young, B. Back from the brink: A second chance at discovery and conservation of the Franciscan Manzanita. Fremontia 2011, 38, 3–17.
[358]
USFWS (United States Fish and Wildlife Service). 5-Year Review of Endangered Status of Raven’s Manzanita, June 2012. Available online: http://milliontrees.me/tag/ravens-manzanita/ (accessed on 19 December 2013).
[359]
Barton, N.H. The role of hybridization in evolution. Mol. Ecol. 2001, 10, 551–568, doi:10.1046/j.1365-294x.2001.01216.x.
Orr, H.A.; Unckless, R.L. Population extinction and the genetics of adaptation. Am. Nat. 2008, 172, 160–169, doi:10.1086/589460.
[362]
Huang, Y.; Lloyd, A.L.; Legros, M.; Gould, F. Gene-drive into insect populations with age and spatial structure: A theoretical assessment. Evol. Appl. 2011, 4, 415–428, doi:10.1111/j.1752-4571.2010.00153.x.
[363]
Hagen, R.H.; Scriber, J.M. Sex linked diapause, color, and allozyme loci in Papilio glaucus: Linkage analysis and significance in a hybrid zone. Heredity 1989, 80, 179–185.
[364]
Hagen, R.H.; Scriber, J.M. Systematics of the Papilio glaucus and P. troilus groups (Lepidoptera: Papilionidae): Inferences from allozymes. Ann. Entom. Soc. Am. 1991, 84, 380–395.
[365]
Scriber, J.M. Tiger tales: Natural history of native North American swallowtails. Am. Entomol. 1996, 42, 19–32.
[366]
Scriber, J.M. Absence of behavioral induction in oviposition preference of Papilio glaucus (Lepidoptera: Papilionidae). Great Lakes Entomol. 1993, 26, 81–95.
[367]
Scriber, J.M.; Lederhouse, R.C.; Dowell, R.V. Hybridization studies with North American swallowtails. In Swallowtail Butterflies: Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.C., Eds.; Scientific Publishers: Gainesville, FL, USA, 1995; pp. 269–281.
[368]
Deering, M.D.; Scriber, J.M. Field bioassays show heterospecific mating preference asymmetry between hybridizing North American Papilio butterfly species (Lepidoptera: Papilionidae). J. Ethol. 2002, 20, 25–33, doi:10.1007/s10164-002-0050-2.
[369]
Aardema, M.L.; Scriber, J.M. No evidence that male choice contributes to the maintenance of a shared, sex-limited trait in mimetic and non-mimetic female tiger swallowtail butterflies, Papilio glaucus. Evol. Biol. 2013, 40, 108–116, doi:10.1007/s11692-012-9190-7.
[370]
Lederhouse, R.C. Comparative mating behavior and sexual selection in North American swallowtail butterflies. In Swallowtail Butterflies: Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.C., Eds.; Scientific Publishers: Gainesville, FL, USA, 1995; pp. 117–131.
[371]
Stump, A.; Scriber, J.M. Sperm precedence in experimental interspecific multiple matings of hybridizing North American tiger swallowtail butterflies (Lepidoptera: Papilionidae)? J. Lepidopt. Soc. 2006, 60, 65–78.
[372]
Ae, S.A. Ecological and evolutionary aspects of hybridization in some Papilio butterflies. In Swallowtail Butterflies, Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.C., Eds.; Scientific Publication: Gainesville, FL, USA, 1995; pp. 229–235.
[373]
Fox, C.W.; Reed, D.H. Inbreeding depression increases with environmental stress: An experimental study and meta-analysis. Evolution 2011, 65, 246–258, doi:10.1111/j.1558-5646.2010.01108.x.
[374]
Reed, D.H. Albatrosses, eagles and newts, oh my! Exceptions to the prevailing paradigm concerning genetic diversity and population viability. Anim. Conserv. 2010, 13, 448–457, doi:10.1111/j.1469-1795.2010.00353.x.
Bijlsma, R.; Bundgaard, J.; Boerema, A.C. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J. Evol. Biol. 2000, 13, 502–514.
[377]
Reed, D.H.; Briscoe, D.A.; Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 2002, 3, 301–307, doi:10.1023/A:1019948130263.
Frankham, R.J.D.; Ballou, M.D.B.; Eldridge, R.C.; Lacy, R.C.; Ralls, K.; Dudash, M.R.; Fenster, C.B. Predicting the probability of outbreeding depression. Conserv. Biol. 2011, 25, 465–475, doi:10.1111/j.1523-1739.2011.01662.x.
[380]
Gay, L.; Crochet, P.-A.; Bell, D.A.; Lenormand, T. Comparing clines on molecular and phenotypic traits in hybrid zones: A window on tension zone models. Evolution 2008, 62, 2789–2806, doi:10.1111/j.1558-5646.2008.00491.x.
[381]
Stevens, V.M.; Turlure, C.; Baguette, M. A meta-analysis of dispersal in butterflies. Biol. Rev. 2010, 85, 625–642.
[382]
Huxel, G.R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Conserv. 1999, 89, 143–152.
[383]
Wolf, D.E.; Takebayashi, N.; Rieseberg, L.H. Predicting the risks of extinction through hybridization. Conserv. Biol. 2001, 15, 1039–1053, doi:10.1046/j.1523-1739.2001.0150041039.x.
[384]
Seehausen, O. Conservation: Losing biodiversity by reverse speciation. Curr. Biol. 2006, 16, R334–R337, doi:10.1016/j.cub.2006.03.080.
[385]
Taylor, E.B.; Boughman, J.W.; Groenenboom, M.; Sniatynski, M.; Schluter, D.; Gow, J.L. Speciation in reverse: Morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Evolution 2006, 15, 343–355.
[386]
Gilman, R.T.; Behm, J.E. Hybridization, species collapse, and species reemergence after disturbance to premating mechanisms of reproductive isolation. Evolution 2011, 65, 2592–2260, doi:10.1111/j.1558-5646.2011.01320.x.
[387]
Mallet, J.; Wynne, I.R.; Thomas, C.D. Hybridisation and climate change: Brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv. Divers. 2011, 4, 192–199, doi:10.1111/j.1752-4598.2010.00122.x.
[388]
Buggs, R.J.A. Empirical study of hybrid zone movement. Heredity 2007, 99, 301–312, doi:10.1038/sj.hdy.6800997.
[389]
Currat, M.; Ruedi, M.; Petit, R.J.; Excoffier, L. The hidden side of invasions: Massive introgression by local genes. Evolution 2008, 62, 1908–1920.
[390]
Hopper, S.D. Evolutionary networks: Natural hybridization and its conservation significance. In Nature Conservation 4: The Role of Networks; Saunders, D.A., Craig, J.L., Mattiske, E.M., Eds.; Surrey Beatty and Sons: Sydney, Australia, 1995; pp. 51–66.
[391]
Soltis, P.S.; Soltis, D.E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 2009, 60, 561–588, doi:10.1146/annurev.arplant.043008.092039.
[392]
Evans, L.M.; Allan, G.J.; Whitham, T.G. Populus hybrid hosts drive divergence in herbivorous mite, Aceria parapopuli: Implications for conservation of plant hybrid zone as essential habitat. Cons. Genet. 2012, 13, 1601–1609, doi:10.1007/s10592-012-0409-z.
Whitham, T.G.; Martinsen, G.D.; Floate, K.D.; Dungey, H.S.; Potts, B.M.; Keim, P. Plant hybrid zones affect biodiversity: Tools for a genetically-based understanding of community structure. Ecology 1999, 80, 416–428, doi:10.1890/0012-9658(1999)080[0416:PHZABT]2.0.CO;2.
[395]
Floate, K.D.; Whitham, T.G. The “hybrid bridge” hypothesis: Host shifting via plant hybrid swarms. Am. Nat. 1993, 141, 651–662.
[396]
Floate, K.D.; Kearsley, M.J.C.; Whitham, T.G. Elevated herbivory in plant hybrid zones: Chrysomela confluens, Populus and phenological sinks. Ecology 1993, 74, 2056–2065, doi:10.2307/1940851.
[397]
Fritz, R.S. Resistance of hybrid plants to herbivores: Genes, environment, or both? Ecology 1999, 80, 382–391, doi:10.1890/0012-9658(1999)080[0382:ROHPTH]2.0.CO;2.
[398]
Fritz, R.S.; Moulia, C.; Newcombe, G. Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annu. Rev. Ecol. Syst. 1999, 30, 565–591, doi:10.1146/annurev.ecolsys.30.1.565.
[399]
Dungey, H.S.; Potts, B.M.; Whitham, T.G.; Li, H.F. Plant genetics affects arthropod community richness and composition: Evidence from a synthetic eucalypt hybrid population. Evolution 2000, 54, 1938–1946.
[400]
McIntyre, P.M.; Whitham, T.G. Plant genotype affects long-term herbivore population dynamics and extinction: Conservation implications. Ecology 2003, 84, 311–322, doi:10.1890/0012-9658(2003)084[0311:PGALTH]2.0.CO;2.
[401]
Hochwender, C.G.; Fritz, R.S. Plant genetic differences influence herbivore community structure: Evidence from a hybrid willow system. Oecologia 2004, 138, 547–557, doi:10.1007/s00442-003-1472-4.
[402]
Schweitzer, J.A.; Bailey, J.K.; Rehill, B.J.; Martinsen, G.D.; Hart, S.C.; Lindroth, R.L.; Keim, P.; Whitham, T.G. Genetically-based trait in a dominant tree affects ecosystem processes. Ecol. Lett. 2004, 7, 127–134, doi:10.1111/j.1461-0248.2003.00562.x.
[403]
Bangert, E.O.; Turek, R.J.; Martinsen, G.D.; Wimp, G.M.; Bailey, J.K.; Whitham, T.G. Benefits of conservation of plant genetic diversity on arthropod diversity. Conserv. Biol. 2005, 19, 379–390, doi:10.1111/j.1523-1739.2005.00450.x.
[404]
Rehill, B.; Clauss, A.; Wieczorek, L.; Whitham, T.G.; Lindroth, R.L. Foliar phenolic glycosides from Populus fremontii, Populus angustifolia, and their hybrids. Biochem. Syst. Ecol. 2005, 33, 125–131, doi:10.1016/j.bse.2004.06.004.
[405]
Wimp, G.M.; Martinsen, G.D.; Floate, K.D.; Bangert, R.K.; Whitham, T.G. Plant genetic determinants of arthropod community structure and diversity. Evolution 2005, 59, 61–69.
[406]
LeRoy, C.J.; Whitham, T.G.; Keim, P.; Marks, J.C. Plant genes link forests and streams. Ecology 2006, 87, 255–261, doi:10.1890/05-0159.
[407]
Lamit, L.J.; Wojtowicz, T.; Kovacs, Z.; Wooley, S.C.; Zinkgraf, M.; Whitham, T.G.; Lindroth, R.L.; Gehring, C.A. Hybridization among foundation tree species influences the structure of associated understory plant communities. Botany 2011, 89, 165–174, doi:10.1139/B11-006.
[408]
Tovar-Sanchez, E.; Oyama, K. Effect of hybridization of the Quercus crassifolia x Quercus crassipes complex on community structure of endophagous insects. Oecologia 2006, 147, 702–713, doi:10.1007/s00442-005-0328-5.
[409]
Whitham, T.G. Plant hybrid zones as sinks for pests. Science 1989, 244, 1490–1493, doi:10.1126/science.244.4911.1490.
[410]
Scriber, J.M.; Tingey, W.M.; Gracen, V.E.; Sullivan, S.L. Leaf-feeding resistance to the European corn borer in genotypes of tropical (low-DIMBOA) and U.S. Inbred (High-DIMBOA) maize. J. Econ. Entomol. 1975, 68, 823–826.
[411]
Manuwoto, S.; Scriber, J.M. Consumption and utilization of 3 Maize genotypes by the southern armyworm, Spodoptera eridania (Noctuidae). J. Econ. Entom. 1982, 75, 163–167.
[412]
Manuwoto, S.; Scriber, J.M. Neonate larval survival of European corn borers, Ostrinia nubilalis, on high and low DIMBOA genotypes of maize-effects of light intensity and degree of insect inbreeding. Agric. Ecosyst. Environ. 1985, 14, 221–236, doi:10.1016/0167-8809(85)90037-4.
[413]
Strauss, S.Y. Levels of herbivory and parasitism in host hybrid zones. Trends Ecol. Evol. 1994, 9, 209–214, doi:10.1016/0169-5347(94)90245-3.
[414]
Moulia, C. Parasitism of plant and animal hybrids: Are facts and fates the same? Ecology 1999, 80, 392–406, doi:10.1890/0012-9658(1999)080[0392:POPAAH]2.0.CO;2.
[415]
Slansky, F.; Scriber, J.M. Food Consumption and Utilization. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology; Kerkut, G.A., Gilbert, L.I., Eds.; Permagon Press: Oxford, UK, 1985.
[416]
Mattson, W.J.; Scriber, J.M. Nutritional ecology of insect folivores of woody plants: Water, nitrogen, fiber, and mineral considerations. In Nutritional Ecology of Insects, Mites, and Spiders; Slansky, F., Jr., Rodriques, J.G., Eds.; Wiley: New York, NY, USA, 1987; pp. 105–146.
[417]
Lindtke, D.; Buerkle, C.A.; Barbara, T.; Heinze, B.; Castiglione, S.; Bartha, D.; Lexer, C. Recombinant hybrids retain heterozygosity at many loci: Insights into the genomics of reproductive isolation in Populus. Mol. Ecol. 2012, 21, 5042–5048, doi:10.1111/j.1365-294X.2012.05744.x.
[418]
Altizer, S.; Ostfeld, R.S.; Johnson, T.J.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519, doi:10.1126/science.1239401.
[419]
Martin, L.B.; Hopkins, W.A.; Mydlarz, L.D.; Rohr, J.R. The effects of anthropogenic global changes on immune functions and disease resistance. Ann. N. Y. Acad. Sci. 2010, 1195, 129–148, doi:10.1111/j.1749-6632.2010.05454.x.
Bartel, R.A.; Oberhauser, K.S.; deRoode, J.C.; Altizer, S. Monarch butterfly migration and mparasite transmission in eastern North America. Ecology 2011, 92, 342–351, doi:10.1890/10-0489.1.
[422]
Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Osfeld, R.S.; Samual, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162, doi:10.1126/science.1063699.
[423]
David, P. Heterozygosity-fitness correlations: New perspectives on old problems. Heredity 1998, 80, 531–537, doi:10.1046/j.1365-2540.1998.00393.x.
[424]
Watt, W.B. Allozymes in evolutionary genetics: Self-imposed burden or extraordinary tool? Genetics 1994, 136, 11–16.
[425]
Britten, H.B. Meta-analysis of the association between multilocus heterozygosity and fitness. Evolution 1996, 50, 2158–2164, doi:10.2307/2410687.
[426]
Thelan, G.C.; Allendorf, F.W. Heterozygosity-fitness correlations in rainbow trout: Effects of allozyme loci or associative overdominance? Evolution 2001, 55, 1180–1187.
[427]
Federici, B.A. Pathogens of Insects. In Encyclopedia of Insects; Resh, V.H., Carde, R.T., Eds.; Academic Press: New York, NY, USA, 2003; pp. 856–865.
[428]
Lafferty, L.A.; Gerber, L.R. Good medicine for conservation biology: The intersection of epidemiology and conservation theory. Cons. Biol. 2002, 16, 593–604, doi:10.1046/j.1523-1739.2002.00446.x.
[429]
Sage, R.D.; Heyneman, D.; Lim, K.-C.; Wilson, A.C. Wormy mice in a hybrid zone. Nature 1986, 324, 60–63, doi:10.1038/324060a0.
[430]
Hafner, M.S.; Demastes, J.W.; Hafner, D.J.; Spradling, T.A.; Sudman, P.D.; Nadler, S.A. Age and movement of a hybrid zone: Implications for dispersal distance in pocket gophers and their chewing lice. Evolution 1998, 52, 278–282, doi:10.2307/2410946.
[431]
Sammataro, D.; Gerson, U.; Needam, G. Parasitic mites of honey bees: Life history, implications, and impact. Annu. Rev. Entomol. 2000, 45, 519–548, doi:10.1146/annurev.ento.45.1.519.
[432]
Scriber, J.M.; Hagen, R.H.; Lederhouse, R.C. Genetics of mimicry in the tiger swallowtail butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae). Evolution 1996, 50, 222–236, doi:10.2307/2410795.
[433]
Donovan, J. Multiple Fitness Indicators for Laboratory Hybrid Larvae of Papilio glaucus and Papilio canadensis (Lepidoptera: Papilionidae). MSc. Thesis, Michigan State University, East Lansing, MI, USA, June 2001.
[434]
Johannesen, J.; Keyghobadi, N.; Schuler, H.; Stauffer, C.; Vogt, H. Invasion genetics of American cherry fruit fly in Europe and signals of hybridization with the European cherry fruit fly. Entomol. Expt. Appl. 2013, 147, 61–72, doi:10.1111/eea.12041.
Nice, C.C.; Gompert, Z.; Forister, M.L.; Fordyce, J.A. An unseen foe in arthropod conservation efforts: The case of Wolbachia infections in the Karner blue butterfly. Biol. Conserv. 2009, 142, 3137–3146, doi:10.1016/j.biocon.2009.08.020.
[437]
Thomas, M.B.; Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 2003, 18, 344–350, doi:10.1016/S0169-5347(03)00069-7.
[438]
Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900, doi:10.1890/08-0079.1.
[439]
Hoang, A. Immune response to parasitism reduces resistance of Drosophila melanogaster to desiccation and starvation. Evolution 2001, 55, 2353–2358.
[440]
Lampert, E. Influences of plant traits on immune responses of specialist and generalist herbivores. Insects 2012, 3, 573–592, doi:10.3390/insects3020573.
[441]
Moore, J.; Freehling, M. Cockroach hosts in thermal gradients suppress parasite development. Oecologia 2002, 133, 261–266, doi:10.1007/s00442-002-1030-5.
[442]
Brasier, C.M. Rapid evolution of introduced plant pathogens via interspecific hybridization. BioScience 2001, 51, 123–133, doi:10.1641/0006-3568(2001)051[0123:REOIPP]2.0.CO;2.
[443]
Nunney, L.; Yuuan, X.; Bromley, R.; Hartung, J.; Montero-Astua, M.; Mauricio, M.L.; Ortiz, B.; Stouthamer, R. Population genomic analysis of a bacterial plant pathogen: Novel insight into the origin of Pierce’s dsisease of grapevine in the U.S. PLoS One 2010, 5, doi:10.1371/journal.pone.0015488.
[444]
Seddon, P.J.; Armstrong, D.P.; Maloney, R.F. Developing the science of reintroduction biology. Conserv. Biol. 2007, 21, 303–312, doi:10.1111/j.1523-1739.2006.00627.x.
[445]
Armstrong, D.P.; Seddon, P. Directions in reintroduction biology. Trends Ecol. Evol. 2008, 23, 20–25, doi:10.1016/j.tree.2007.10.003.
[446]
Fischer, J.; Lindenmayer, D.B. An assessment of the published results of animal relocations. Biol. Conserv. 2000, 96, 1–11, doi:10.1016/S0006-3207(00)00048-3.
[447]
Chatzimanolis, S.; Caterino, M.S. Phylogeography and conservation genetics of California coastal terrestrial communities: A comparative study using three beetles. Insect Conserv. Divers. 2008, 1, 222–232, doi:10.1111/j.1752-4598.2008.00030.x.
[448]
Lankau, R.; Jorgensen, P.S.; Harris, D.J.; Sih, A. Incorporating evolutionary principals into environmental management and policy. Evol. Appl. 2011, 4, 315–325, doi:10.1111/j.1752-4571.2010.00171.x.
Brower, L.P.; Taylor, O.R.; Williams, E.H.; Slayback, D.A.; Zubieta, R.R.; Isabel, M. Decline of monarch butterflies overwintering in Mexico: Is the migratory phenomenon at risk? Insect Conserv. Divers. 2011, 5, 95–100.
[454]
Feder, J.L.; Forbes, A.A. Host fruit-odor discrimination and sympatric host-race formation. In Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University California Press: Berkeley, CA, USA, 2008.
[455]
Carroll, S.P. Facing change: Forms and foundations of contemporary adaptation to biotic invasions. Mol. Ecol. 2008, 17, 361–372, doi:10.1111/j.1365-294X.2007.03484.x.
[456]
Carroll, S.P.; Loye, J.E.; Dingle, H.; Mathieson, M.; Famula, T.R.; Zalucki, M.P. And the beak shall inherit-evolution in response to invasion. Ecol. Lett. 2005, 8, 944–951, doi:10.1111/j.1461-0248.2005.00800.x.
[457]
Murphy, S.M. Enemy-free space maintains swallowtail butterfly host shift. Proc. Natl. Acad. Sci. USA 2004, 101, 18048–18052, doi:10.1073/pnas.0406490102.
[458]
Slove, J.; Janz, N. The relationship between diet breadth and geographical range size in the butterfly subfamily Nymphalinae- as study of global scale. PLoS One 2011, 6, e16057, doi:10.1371/journal.pone.0016057.
[459]
Jahner, J.P.; Bonilla, M.M.; Badick, K.J.; Shapiro, A.M.; Forister, M.L. Use of exotic hosts by Lepidoptera: Widespread species colonize more novel hosts. Evolution 2011, 65, 2719–2724, doi:10.1111/j.1558-5646.2011.01310.x.
[460]
Scriber, J.M.; Hainze, J. Geographic variation in host utilization and the development of insect outbreaks. In Insect Outbreaks: Ecological and Evolutionary Processes; Barbosa, P., Schultz, J.C., Eds.; Academic Press: New York, NY, USA, 1987; pp. 433–468.
[461]
Scriber, J.M.; Allen, G.R.; Walker, P.W. Ecological monophagy in Tasmanian Graphium macleayanum moggana and evolutionary reflections of ancient Angiosperm hosts. Insect Sci. 2006, 13, 325–338, doi:10.1111/j.1744-7917.2006.00101.x.
[462]
Ording, G.J. Isolated Hybrid Swarm: Introgressed Genes of Papilio glaucus in a P. canadensis Population far beyond Their Hybrid Zone. MSc. Thesis, Michigan State University, East Lansing, MI, USA, August 2001.
[463]
Scriber, J.M.; Gage, S. Pollution and global climate change: Plant ecotones, butterfly hybrid zones, and biodiversity. In The Swallowtail Butterflies: Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.H., Eds.; Scientific Publishers, Inc.: Gainesville, FL, USA, 1995; pp. 319–344.
[464]
Agrawal, A.A. Phenotypic plasticity in the interactions and evolution of species. Science 2001, 294, 321–326, doi:10.1126/science.1060701.
[465]
Condamine, F.L.; Sperling, F.A.X.; Kergoat, G.J. Global biogeographical pattern of swallowtail diversification demonstrates alternative colonization routes in the Northern and Southern hemispheres. J. Biogeogr. 2013, 40, 9–23, doi:10.1111/j.1365-2699.2012.02787.x.
[466]
Buerkle, C.A.; Morris, R.J.; Asmussen, M.A.; Rieseberg, L.H. The likelihood of homoploid hybrid speciation. Heredity 2000, 84, 441–451, doi:10.1046/j.1365-2540.2000.00680.x.
[467]
Lexer, C.; Stolting, K.N. Tracing the recombination and colonization history of hybrid species in space and time. Mol. Ecol. 2011, 20, 3701–3704, doi:10.1111/j.1365-294X.2011.05246.x.
Nosil, P.; Gompert, Z.; Farkas, T.E.; Comeault, A.A.; Feder, J.L.; Buerkle, C.A.; Parchman, T.L. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B 2012, doi:10.1098/rspb.2012.0813.
[470]
Brower, L.P. Speciation in butterflies of the Papilio glaucus group. I. Morphological relationships and hybridization. Evolution 1959, 13, 40–63, doi:10.2307/2405944.
[471]
Moritz, C. Defining “evolutionarily significant units” for conservation. Trends Ecol. Evol. 1994, 9, 373–375, doi:10.1016/0169-5347(94)90057-4.
[472]
Galtier, N.; Nabholz, B.; Glemin, S.; Hurst, G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009, 18, 4541–4550.
[473]
Hendry, A.P.; Vamosi, S.M.; Latham, S.J.; Heilbuth, J.C.; Day, T. Questioning species realities. Conserv. Genet. 2000, 1, 67–76, doi:10.1023/A:1010133721121.
[474]
Hey, J. On the failure of modern species concepts. Trends Ecol. Evol. 2006, 21, 447–450, doi:10.1016/j.tree.2006.05.011.
[475]
Avise, J.C.; Walker, D. Abandon all species concepts? A response. Cons. Genet. 2000, 1, 77–80, doi:10.1023/A:1010189805191.
[476]
Harrison, R.G. Linking evolutionary pattern and process: The relevance of species concepts for the study of speciation. In Endless Forms: Species and Speciation; Howard, D.J., Berlocher, S.H., Eds.; Oxford University Press: New York, NY, USA, 1998.
[477]
Howard, D.J.; Berlocher, S.H. Endless Forms: Species and Speciation; Oxford University Press: New York, NY, USA, 1998.
[478]
Crozier, R.H. Preserving the information content of species: Genetic diversity, phylogeny, and conservation worth. Annu. Rev. Ecol. Syst. 1997, 28, 243–268, doi:10.1146/annurev.ecolsys.28.1.243.
[479]
Maroja, L.S.; Andres, J.A.; Harrison, R.G. Genealogical discordance and patterns of introgression and selection across a cricket hybrid zone. Evolution 2009, 63, 2999–3015, doi:10.1111/j.1558-5646.2009.00767.x.
[480]
Feder, J.L.; Flaxmann, S.M.; Egan, S.P.; Nosil, P. Hybridization and the build-up of genomic divergence during speciation. J. Evol. Biol. 2013, 26, 261–266, doi:10.1111/jeb.12009.
[481]
Scriber, J.M. Interaction of introgression from Papilio glaucus canadensis and diapause in producing ‘spring form’ Eastern tiger swallowtail butterflies, P. glaucus. Great Lakes Entomol. 1990, 23, 127–138.
[482]
Ording, G.J. An Analysis of Climate Induced Hybrid Speciation in Tiger Swallowtail Butterflies (Papilio). Ph.D. Dissertation, Michigan State University, East Lansing, MI, USA, June 2008.
[483]
Wadsworth, C.B.; Woods, W.A.; Hahn, D.A.; Dopman, E.B. One phase of the dormancy development pathway is critical for the evolution of insect seasonality. J. Evol. Biol. 2013, 26, 2359–2368, doi:10.1111/jeb.12227.
[484]
Condamine, F.L.; Rolland, J.; Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 2013, 16, 72–85, doi:10.1111/ele.12062.
[485]
Gompert, Z. Population genomics as a new tool for wildlife management. Mol. Ecol. 2012, 21, 1542–1544, doi:10.1111/j.1365-294X.2012.05471.x.
[486]
Nosil, P.; Feder, J.L. Genome evolution and speciation: Toward quantitative descriptions of pattern and process. Evolution 2013, 67, 2461–2467, doi:10.1111/evo.12191.
[487]
Scriber, J.M. Origins of the regional feeding abilities in the tiger swallowtail butterfly: Ecological monophagy and the Papilio glaucus australis subspecies in Florida. Oecologia 1986, 71, 94–103, doi:10.1007/BF00377326.
[488]
Sands, T.; Larson, M.; Gleeson, M.; Scriber, J.M. Personal communication. University of Queensland: QLD, Brisbane, Australia, 2006.
[489]
Parry, D.; Herms, D.A.; Scriber, J.M. Michigan State University, East Lansing, MI, USA, 1996. Unpublished work.
[490]
Thiem, S.; Bauer, L. Michigan State University, East Lansing, MI, USA, 1997. Unpublished work.
[491]
Hamm, C. Michigan State University, East Lansing, MI, USA, 2009. Unpublished work.
[492]
Scriber, J.M.; Maher, E.; Niblack, M.; McGuire, M.; Nguyen, J. Michigan State University, East Lansing, MI, USA, 2008–2012. Unpublished work.