全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

DOI: 10.3390/insects4030476

Keywords: Brevibacillus laterosporus, entomopathogenic bacteria, insecticide, nematicide, biopesticide, pests, biological control, antimicrobial, bioremediation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity.

References

[1]  Oliveira, E.J.; Rabinovitch, L.; Monnerat, R.G.; Passos, L.K.; Zahner, V. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl. Environ. Microbiol. 2004, 70, 6657–6664, doi:10.1128/AEM.70.11.6657-6664.2004.
[2]  Khan, M.R.; Saha, M.L.; Afroz, H. Microorganisms associated with gemstones. Bangladesh J. Bot. 2001, 30, 93–96.
[3]  Raymundo, A.K.; Capistrano, B.G.; Aquino, A. Isolation, characterization and identification of bacteria from lahar. Philipp. Agric. Sci. 1997, 80, 57–64.
[4]  Laubach, A.C. Studies on aerobic, sporebearing, non pathogenic bacteria. Spore bearing organism in water. J. Bacteriol. 1916, 1, 505–512.
[5]  Suslova, M.Y.; Lipko, I.A.; Mamaeva, E.V.; Parfenova, V.V. Diversity of cultivable bacteria isolated from the water column and bottom sediments of the Kara Sea shelf. Mikrobiologiia (Russ. Federation) 2012, 81, 484–491.
[6]  White, G.F. The cause of European foulbrood. US Dep. Agric. Bur. Entomol. 1912, 157, 1–15.
[7]  Roy, D.K.; Singh, G.P.; Sahay, A.; Sahay, D.N.; Suryanarayana, N. Leaf surface microflora for tasar crop improvement. Indian Silk 2006, 45, 19–21.
[8]  Sarkar, P.K.; Hasenack, B.; Nout, M.J.R. Diversity and functionality of Bacillus and related genera isolated from spontaneously fermented soybeans (Indian Kinema) and locust beans (African Soumbala). Int. J. Food Microbiol. 2002, 77, 175–186, doi:10.1016/S0168-1605(02)00124-1.
[9]  Adegunloye, D.V.; Adetuyi, F.C.; Akinyosoye, F.A.; Doyeni, M.O. Microbial analysis of compost using cowdung as booster. Pak. J. Nutr. 2007, 6, 506–510, doi:10.3923/pjn.2007.506.510.
[10]  Varadaraj, M.C.; Devi, N.; Keshava, N.; Manjrekar, S.P. Antimicrobial activity of neutralized extracellular culture filtrates of lactic acid bacteria isolated from a cultured Indian milk product ('dahi'). Int. J. Food Microbiol. 1993, 20, 259–267, doi:10.1016/0168-1605(93)90170-L.
[11]  Román-Blanco, C.; Sanz-Gómez, J.J.; López-Díaz, T.-M.; Otero, A.; García-López, M.-L. Numbers and species of Bacillus during the manufacture and ripening of Castellano cheese. Milchwissenschaft 1999, 54, 385–388.
[12]  Iurlina, M.O.; Fritz, R. Characterization of microorganisms in Argentinean honeys from different sources. Int. J. Food Microbiol. 2005, 105, 297–304, doi:10.1016/j.ijfoodmicro.2005.03.017.
[13]  Fangio, M.F.; Roura, S.I.; Fritz, R. Isolation and identification of Bacillus spp. and related genera from different starchy foods. J. Food Sci. 2010, 75, M218–M221, doi:10.1111/j.1750-3841.2010.01566.x.
[14]  Sharma, A.; Rao, C.L.S.N.; Ball, B.K.; Hasija, S.K. Characteristics of extracellular proteases produced by Bacillus laterosporus and Flavobacterium sp. isolated from gelatin-factory effluents. World J. Microbiol. Biotechnol. 1996, 12, 615–617, doi:10.1007/BF00327724.
[15]  Chen, Y.; Gao, H.; Zhang, Y.; Deng, M.; Wu, Z.; Zhu, L.; Duan, Q.; Xu, B.; Liang, C.; Yue, Z.; Xiao, X. Analysis of the bacterial diversity existing on animal hide and wool: Development of a preliminary PCR-restriction fragment length polymorphism fingerprint database for identifying isolates. J. AOAC Int. 2012, 95, 1750–1754, doi:10.5740/jaoacint.11-482.
[16]  Bagherzadeh Kasmani, F.; Karimi Torshizi, M.A.; Allameh, A.; Shariatmadari, F. A novel aflatoxin-binding Bacillus probiotic: Performance, serum biochemistry, and immunological parameters in Japanese quail. Poultry Sci. 2012, 91, 1846–1853, doi:10.3382/ps.2011-01830.
[17]  McCray, A.H. Spore-forming bacteria of the apiary. J. Agric. Res. 1917, 8, 399–420.
[18]  Smith, N.R.; Gordon, R.E.; Clark, F.E. Aerobic sporeforming bacteria. US Dep. Agric. Agric. Monograph. 1952, 16, 114–116.
[19]  Steinhaus, E.A. An orientation with respect to members of the genus Bacillus pathogenic for insects. Bacteriol. Rev. 1946, 10, 51–61.
[20]  Shida, O.; Takagi, H.; Kadowaki, K.; Komagata, K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinobacillus gen. nov. Int. J. Syst. Bacteriol. 1996, 46, 939–946, doi:10.1099/00207713-46-4-939.
[21]  Ruiu, L.; Satta, A.; Floris, I. Emerging entomopathogenic bacteria for insect pest management. Bull. Insectology 2013, 66, 181–186.
[22]  Gilliam, M.; Valentine, D.K. Bacteria isolated from the intestinal contents of foraging worker honey bees, Apis mellifera: The Genus Bacillus. J. Invertebr. Pathol. 1976, 28, 275–276, doi:10.1016/0022-2011(76)90137-3.
[23]  Bailey, L. The pathogenicity for honey-bee larvae of microorganisms associated with European foulbrood. J. Insect Pathol. 1963, 5, 198–205.
[24]  Alippi, A.M. A comparison of laboratory techniques for the detection of significant bacteria of the honey bee, Apis mellifera, in Argentina. J. Apicult. Res. 1991, 30, 75–80.
[25]  Shimanuki, H.; Knox, D.A. Diagnosis of honey bee diseases. US Dep. Agric. Agric. Handbook 1991, AH-690, 10–11.
[26]  Djukic, M.; Poehlein, A.; Thürmer, A.; Daniel, R. Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates. J. Bacteriol. 2011, 193, 5535–5536, doi:10.1128/JB.05696-11.
[27]  Sharma, V.; Singh, P.K.; Midha, S.; Ranjan, M.; Korpole, S.; Patil, P.B. Genome sequence of Brevibacillus laterosporus strain GI-9. J. Bacteriol. 2012, 194, 1279, doi:10.1128/JB.06659-11.
[28]  Hong, H.A.; Duc, L.H.; Cutting, S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835, doi:10.1016/j.femsre.2004.12.001.
[29]  Porubcan, R.S. Administering Bacillus laterosporus to increase poultry feed conversion and weight gain. U.S. Patent 0,099,624, 29 May 2003.
[30]  Umezawa, K.; Takeuchi, T. Spergualin: A new antitumour antibiotic. Biomed. Pharmacother. 1987, 41, 227–232.
[31]  Hannay, C.L. The parasporal body of Bacillus laterosporus Laubach. J. Biophys. Biochem. Cytol. 1957, 3, 1001–1010, doi:10.1083/jcb.3.6.1001.
[32]  Fitz-James, P.C.; Young, I.E. Morphological and chemical studies of the spores and parasporal bodies of Bacillus laterosporus. J. Biophys. Biochem. Cytol. 1958, 4, 639–649, doi:10.1083/jcb.4.5.639.
[33]  Montaldi, F.A.; Roth, I.L. Parasporal bodies of Bacillus laterosporus sporangia. J. Bacteriol. 1990, 172, 2168–2171.
[34]  Rivers, D.B.; Vann, C.N.; Zimmack, H.L.; Dean, D.H. Mosquitocidal activity of Bacillus laterosporus. J. Invertebr. Pathol. 1991, 58, 444–447, doi:10.1016/0022-2011(91)90191-R.
[35]  Singer, S. The Utility of Morphological Group II Bacillus. Adv. Appl. Microbiol. 1996, 42, 219–261, doi:10.1016/S0065-2164(08)70374-5.
[36]  Salama, H.S.; Foda, M.S.; El-Bendary, M.A.; Abdel-Razek, A. Infection of red palm weevil, Rhynchophorus ferrugineus, by spore-forming bacilli indigenous to its natural habitat in Egypt. J. Pest Sci. 2004, 77, 27–32, doi:10.1007/s10340-003-0023-4.
[37]  Echeverri-Molina, D.; Santolamazza-Carbone, S. Toxicity of synthetic and biological insecticides against adults of the Eucalyptus snout-beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae). J. Pest Sci. 2010, 83, 297–305, doi:10.1007/s10340-010-0298-1.
[38]  Du Rand, N.; Laing, M.D. Determination of insecticidal toxicity of three species of entomopathogenic spore-forming bacterial isolates against Tenebrio molitor L. (Coleoptera: Tenebrionidae). Afr. J. Microbiol. Res. 2011, 5, 2222–2228.
[39]  Arnaut, G.; Boets, A.; Damme, N.; Van Rie, J. Toxins. U.S. Patent 7,919,609, 5 April 2011.
[40]  Warren, G.W. Vegetative insecticidal proteins: Novel proteins for control of corn pests. In Advances in Insect Control: The Role of Transgenic Plants; Carozzi, N.B., Koziel, M.G., Eds.; Taylor & Francis: London, UK, 1997; pp. 109–121.
[41]  Bacillus thuringiensis Toxin Nomenclature. Available online: http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/ (accessed on 17 July 2013).
[42]  Schnepf, H.E.; Narva, K.E.; Stockhoff, B.A.; Lee, S.F.; Walz, M.; Sturgis, B. Pesticidal toxins and genes from Bacillus laterosporus strains. U.S. Patent 6,956,116, 18 October 2005.
[43]  Favret, E.M.; Yousten, A.A. Insecticidal activity of Bacillus laterosporus. J. Invertebr. Pathol. 1985, 45, 195–203, doi:10.1016/0022-2011(85)90009-6.
[44]  Erturk, O.; Demirbag, Z. Studies on bacterial flora and biological control agent of Cydia pomonella L. (Lepidoptera: Tortricidae). Afr. J. Biotechnol. 2006, 5, 2081–2085.
[45]  Ruiu, L.; Floris, I.; Satta, A.; Ellar, D.J. Toxicity of a Brevibacillus laterosporus strain lacking parasporal crystals against Musca domestica and Aedes aegypti. Biol. Contr. 2007, 43, 136–143, doi:10.1016/j.biocontrol.2007.07.002.
[46]  Smirnova, T.A.; Minenkova, I.B.; Orlova, M.V.; Lecadet, M.-M.; Azizbekyan, R.R. The crystal-forming strains of Bacillus laterosporus. Res. Microbiol. 1996, 147, 343–350, doi:10.1016/0923-2508(96)84709-7.
[47]  Orlova, M.V.; Smirnova, T.A.; Ganushkina, L.A.; Yacubovich, V.Y.; Azizbekyan, R.R. Insecticidal activity of Bacillus laterosporus. Appl. Environ. Microbiol. 1998, 64, 2723–2725.
[48]  Goldberg, L.J.; Margalit, J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. News 1977, 37, 355–358.
[49]  Zubasheva, M.V.; Ganushkina, L.A.; Smirnova, T.A.; Azizbekyan, R.R. Larvicidal activity of crystal-forming strains of Brevibacillus laterosporus. Appl. Biochem. Microbiol. 2010, 46, 755–762, doi:10.1134/S0003683810080041.
[50]  Zubasheva, M.V.; Ganushkina, L.A.; Smirnova, T.A.; Azizbekyan, R.R. Enhancement of larvicidal activity of Brevibacillus laterosporus by bioincapsulation in Protozoa Tetrahymena pyriformis and Entamoeba moshkovskii. Appl. Biochem. Microbiol. 2011, 47, 762–766, doi:10.1134/S0003683811080126.
[51]  Ruiu, L.; Delrio, G.; Ellar, D.J.; Floris, I.; Paglietti, B.; Rubino, S.; Satta, A. Lethal and sub-lethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomol. Exp. Appl. 2006, 118, 137–144, doi:10.1111/j.1570-7458.2006.00370.x.
[52]  Bravo, A.; Gill, S.S.; Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435, doi:10.1016/j.toxicon.2006.11.022.
[53]  Ruiu, L.; Satta, A.; Floris, I. Observations on house fly larvae midgut ultrastructure after Brevibacillus laterosporus ingestion. J. Invertebr. Pathol. 2012, 111, 211–216, doi:10.1016/j.jip.2012.08.005.
[54]  Ruiu, L.; Satta, A.; Floris, I. Ultrastructural changes in the gut of adult flies after Brevibacillus laterosporus ingestion. In Proceedings of the 43rd Annual Meeting of the Society for Invertebrate Pathology, Trabzon, Turkey, 11–15 July 2010. Contributed paper 149; p. 97.
[55]  Ruiu, L.; Satta, A.; Floris, I. Immature house fly (Musca domestica) control in breeding sites with a new Brevibacillus laterosporus formulation. Environ. Entomol. 2008, 37, 505–509, doi:10.1603/0046-225X(2008)37[505:IHFMDC]2.0.CO;2.
[56]  Ruiu, L.; Satta, A.; Floris, I. Comparative applications of azadirachtin and Brevibacillus laterosporus based formulations for house fly management experiments in dairy farms. J. Med. Entomol. 2011, 48, 345–350, doi:10.1603/ME09299.
[57]  Ruiu, L.; Satta, A.; Floris, I. Susceptibility of the house fly pupal parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) to the entomopathogenic bacteria Bacillus thuringiensis and Brevibacillus laterosporus. Biol. Contr. 2007, 43, 188–194, doi:10.1016/j.biocontrol.2007.08.005.
[58]  Ruiu, L.; Floris, I.; Satta, A. Susceptibility of the honeybee (Apis mellifera L.) to entomopathogenic bacterial toxins used for the biological control. Redia 2007, 90, 87–90.
[59]  Bone, L.W.; Singer, S. Control of parasitic nematode ova/larvae with a Bacillus laterosporus. U.S. Patent 5,045,314, 3 September 1991.
[60]  Huang, X.; Tian, B.; Niu, Q.; Yang, J.; Zhang, L.; Zhang, K. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 2005, 156, 719–727, doi:10.1016/j.resmic.2005.02.006.
[61]  Maizels, R.M.; Blaxter, M.L.; Selkir, M.E. Forms and functions of nematode surfaces. Exp. Parasitol. 1993, 77, 380–384, doi:10.1006/expr.1993.1096.
[62]  Lian, L.H.; Tian, B.Y.; Xiong, R.; Zhu, M.Z.; Xu, J.; Zhang, K.Q. Proteases from Bacillus: A new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 2007, 45, 262–269, doi:10.1111/j.1472-765X.2007.02184.x.
[63]  Tian, B.; Li, N.; Lian, L.; Liu, J.; Yang, J.; Zhang, K.Q. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch. Microbiol. 2006, 186, 297–305, doi:10.1007/s00203-006-0145-1.
[64]  Tian, B.; Ke, C.R.; Huang, W.; Zhang, K.-Q.; Huang, J.-Z. Direct visualization of bacterial infection process in nematode hosts by an improved immunocytochemical method. World J. Microbiol. Biotechnol. 2009, 25, 909–912, doi:10.1007/s11274-008-9945-6.
[65]  Tian, B.; Huang, W.; Huang, J.; Jiang, X.; Qin, L. Investigation of protease-mediated cuticle-degradation of nematodes by using an improved immunofluorescence-localization method. J. Invertebr. Pathol. 2009, 101, 143–146, doi:10.1016/j.jip.2009.05.001.
[66]  Tian, B.; Yang, J.; Lian, L.; Wang, C.; Li, N.; Zhang, K.Q. Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl. Microbiol. Biotechnol. 2007, 74, 372–380, doi:10.1007/s00253-006-0690-1.
[67]  Singer, S.; Bair, T.B.; Hammill, T.B.; Berte, A.M.; Correa-Ochoa, M.M.; Stambaugh, A.D. Fermentation and toxin studies of the molluscicidal strains of Bacillus brevis. J. Ind. Microbiol. 1994, 13, 112–119, doi:10.1007/BF01584108.
[68]  Strayer, D.L.; Hattala, K.A.; Kahnle, A.W. Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Can. J. Fish. Aquat. Sci. 2004, 61, 924–941, doi:10.1139/f04-043.
[69]  Singer, S.; Van Fleet, A.L.; Viel, J.J.; Genevese, E.E. Biological control of the zebra mussel Dreissena polymorpha and the snail Biomphalaria glabrata, using gramicidin S and D and molluscicidal strains of Bacillus. J. Ind. Microbiol. Biotechnol. 1997, 18, 226–231, doi:10.1038/sj.jim.2900371.
[70]  Chandel, S.; Allan, E.J.; Woodward, S. Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J. Phytopathol. 2010, 158, 470–478.
[71]  Saikia, R.; Gogoi, D.K.; Mazumder, S.; Yadav, A.; Sarma, R.K.; Bora, T.C.; Gogoi, B.K. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol. Res. 2011, 166, 216–225, doi:10.1016/j.micres.2010.03.002.
[72]  Song, Z.; Liu, K.; Lu, C.; Yu, J.; Ju, R.; Liu, X. Isolation and characterization of a potential biocontrol Brevibacillus laterosporus. Afr. J. Microbiol. Res. 2011, 5, 2675–2681.
[73]  Idris, H.A.; Labuschagne, N.; Korsten, L. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biol. Contr. 2008, 45, 72–84.
[74]  Zhang, S.; Reddy, M.S.; Kokalis-Burelle, N.; Wells, L.W.; Nightengale, S.P.; Kloepper, J.W. Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Dis. 2001, 85, 879–884.
[75]  Yobo, K.S.; Laing, M.D.; Hunter, C.H. Effect of commercially available rhizobacteria strains on growth and production of lettuce, tomato and pepper. S. Afr. J. Plant Soil 2004, 21, 230–235, doi:10.1080/02571862.2004.10635054.
[76]  Li, X.; Wang, Z.; Dong, X.; Wang, G.; Jia, Y. Bioactivity quantification of a novel antimicrobial peptide by agar diffusion bioassay. In Proceedings of the 2011 International Conference on New Technology of Agricultural Engineering, Zibo, China, 27 May 2011. Article number 5943979; pp. 1096–1099.
[77]  Zhao, J.; Guo, L.; Zeng, H.; Yang, X.; Yuan, J.; Shi, H.; Xiong, Y.; Chen, M.; Han, L.; Qiu, D. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 2012, 33, 206–211.
[78]  Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250.
[79]  Prasanna, L.; Eijsink, V.G.H.; Meadow, R.; Gaseidnes, S. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl. Microbiol. Biotechnol. 2013, 97, 1601–1611.
[80]  Singh, P.K.; Chittpurna; Ashish; Sharma, V.; Patil, P.B.; Korpole, S. Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PLoS One 2012, 7, e31498.
[81]  Alippi, A.M.; Reynaldi, F.J. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J. Invertebr. Pathol. 2006, 91, 141–146.
[82]  Shoji, J.; Sakazaki, R.; Wakisaka, Y.; Koizumi, K.; Mayama, M. Isolation of a new antibiotic, laterosporamine. (Studies on antibiotics from the genus Bacillus. XIII). J. Antibiot. 1976, 29, 390–393.
[83]  Barsby, T.; Kelly, M.T.; Andersen, R.J. Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. J. Nat. Prod. 2002, 65, 1447–1451.
[84]  Desjardine, K.; Pereira, A.; Wright, H.; Matainaho, T.; Kelly, M.; Andersen, R.J. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: Structure elucidation and synthesis. J. Nat. Prod. 2007, 70, 1850–1853.
[85]  Qin, C.; Xu, C.; Zhang, R.; Niu, W.; Shang, X. On-resin cyclization and antimicrobial activity of Laterocidin and its analogues. Tetrahedron Lett. 2010, 51, 1257–1261, doi:10.1016/j.tetlet.2009.11.007.
[86]  Kamiyama, T.; Umino, T.; Nakamura, Y.; Itezono, Y.; Sawairi, S.; Satoh, T.; Yokose, K. Bacithrocins A, B and C, novel thrombin inhibitors. J. Antibiot. 1994, 47, 959–968, doi:10.7164/antibiotics.47.959.
[87]  Aoyagi, T.; Yoshida, S.; Matsuda, N.; Ikeda, T.; Hamada, M.; Takeuchi, T. Leuhistin, a new inhibitor of aminopeptidase M, produced by Bacillus laterosporus BMI156–14F1. I. Taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiot. 1991, 44, 573–578, doi:10.7164/antibiotics.44.573.
[88]  Aramori, I.; Fukagawa, M.; Tsumura, M.; Iwami, M.; Yokota, Y.; Kojo, H.; Kohsaka, M.; Ueda, Y.; Imanaka, H. Isolation of soil strains producing new cephalosporin acylases. J. Ferment. Bioeng. 1991, 72, 227–231, doi:10.1016/0922-338X(91)90154-9.
[89]  Wolfenden, R.E.; Pumford, N.R.; Morgan, M.J.; Shivaramaiah, S.; Wolfenden, A.D.; Pixley, C.M.; Green, J.; Tellez, G.; Hargis, B.M. Evaluation of selected direct-fed microbial candidates on live performance and Salmonella reduction in commercial turkey brooding houses. Poultry Sci. 2011, 90, 2627–2631.
[90]  Kuznetsova, N.I.; Azizbekyan, R.R.; Konyukhov, I.V.; Pogosyan, S.I.; Rubin, A.B. Inhibition of photosynthesis in cyanobacteria and plankton algae by the bacterium Brevibacillus laterosporus metabolites. Dokl. Biochem. Biophys. 2008, 421, 181–184.
[91]  Wen, J.; XiangHu, H.; ChangLing, L.; JiaHui, Z. Research on algicidal effect of bioactive metabolites of Brevibacillus laterosporus on Oscillattoria sp. in shrimp pond. J. Fish. Chin. 2013, 37, 465–472.
[92]  Lim, J.G.; Park, D.H. Degradation of polyvinyl alcohol by Brevibacillus laterosporus: Metabolic pathway of polyvinyl alcohol to acetate. J. Microbiol. Biotechnol. 2001, 11, 928–933.
[93]  Gomare, S.S.; Govindwar, S.P. Brevibacillus laterosporus MTCC 2298: A potential azo dye degrader. J. Appl. Microbiol. 2009, 106, 993–1004.
[94]  Jeyaseelan, A.; Sivashanmugam, K.; Jayaraman, K. Comparative applications of bioreactor and shake flask system for the biodegradation of tannin and biotreatment of composite tannery effluents. Pollut. Res. 2008, 27, 371–375.
[95]  Reda, A.B.; Ashraf, T.A.-H. Optimization of bacterial biodegradation of toluene and phenol under different nutritional and environmental conditions. J. Appl. Sci. Res. 2010, 6, 1086–1095.
[96]  Zouboulis, A.I.; Loukidou, M.X.; Matis, K.A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem. 2004, 39, 909–916, doi:10.1016/S0032-9592(03)00200-0.
[97]  Holail, H.; Al-Bahadly, A.; Olama, Z. Detoxification of hexavalent chromium Cr(VI) by Bacillus laterosporus and its application in Lebanese waste water. WIT Trans. Ecol. Environ. 2011, 153, 233–242, doi:10.2495/WS110211.
[98]  Kamika, I.; Momba, M.N.B. Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems. Sci. Total Environ. 2011, 410–411, 172–181, doi:10.1016/j.scitotenv.2011.09.060.
[99]  Zahner, V.; Rabinovitch, L.; Suffys, P.; Momen, H. Genotypic diversity among Brevibacillus laterosporus strains. Appl. Environ. Microbiol. 1999, 65, 5182–5185.
[100]  Arulmani, M.; Aparanjini, K.; Vasanthi, K.; Arumugam, P.; Arivuchelvi, M.; Kalaichelvan, P.T. Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World J. Microbiol. Biotechnol. 2007, 23, 475–481.
[101]  Usharani, B.; Muthuraj, M. Production and characterization of protease enzyme from Bacillus laterosporus. Afr. J. Microbiol. Res. 2010, 4, 1057–1063.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133