全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

DOI: 10.3390/insects4030447

Keywords: monarch butterfly, Danaus plexippus, neogregarine, Ophryocystis elektroscirrha, aspect ratio, spore size, parasite load

Full-Text   Cite this paper   Add to My Lib

Abstract:

Monarch butterflies ( Danaus plexippus) throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha ( OE). This protozoan is transmitted when larvae ingest infectious stages (spores) scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii). Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation). Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

References

[1]  Roberts, L.; Janovy, J. Foundations of Parasitology, 8th ed. ed.; McGraw-Hill: New York, NY, USA, 2008; p. 728.
[2]  Wolken, W.A.M.; Tramper, J.; van der Werf, M.J. What can spores do for us? Trends Biotechnol 2003, 21, 338–345, doi:10.1016/S0167-7799(03)00170-7.
[3]  Roper, M.; Pepper, R.E.; Brenner, M.P.; Pringle, A. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc. Nat. Acad. Sci. USA 2008, 105, 20583–20588.
[4]  Saxena, D.; Ben-Dov, E.; Manasherob, R.; Barak, Z.; Boussiba, S.; Zaritsky, A. A UV tolerant mutant of Bacillus thuringiensis subsp kurstaki producing melanin. Curr. Microbiol. 2002, 44, 25–30.
[5]  Wang, Y.L.; Casadevall, A. Decreased susceptibility of melanized Cryptococcus neoformans to UV-light. Appl. Environ. Microbiol. 1994, 60, 3864–3866.
[6]  Kawamura, C.; Tsujimoto, T.; Tsuge, T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol. Plant Microbe Interact. 1999, 12, 59–63, doi:10.1094/MPMI.1999.12.1.59.
[7]  Sasal, P.; Jobet, E.; Faliex, E.; Morand, S. Sexual competition in an acanthocephalan parasite of fish. Parasitology 2000, 120, 65–69, doi:10.1017/S0031182099005272.
[8]  Benesh, D.P.; Seppala, O.; Valtonen, E.T. Acanthocephalan size and sex affect the modification of intermediate host colouration. Parasitology 2009, 136, 847–854, doi:10.1017/S0031182009006180.
[9]  Tsotetsi, A.M.; Avenant-Oldewage, A.; Mashego, S.N. Aspects of the ecology of Lamproglena clariae (Copepoda: Lernaeidae) from the Vaal River system, South Africa. J. Crustac. Biol. 2004, 24, 529–536, doi:10.1651/C-2477.
[10]  Leonardos, I.; Trilles, J.P. Host-parasite relationships: occurrence and effect of the parasitic isopod Mothocya epimerica on sand smelt Atherina boyeri in the Mesolongi and Etolikon Lagoons (W. Greece). Disease. Aquat. Org. 2003, 54, 243–251, doi:10.3354/dao054243.
[11]  McLaughlin, R.E.; Myers, J. Ophryocistis elektroscirrha sp. n. a neogregarine pathogen of the monarch butterfly Danaus plexippus (L.) and the Florida queen butterfly Danaus gilippus berenice Cramer. J. Protozool. 1970, 17, 300–305.
[12]  de Roode, J.C.; Chi, J.; Rarick, R.M.; Altizer, S. Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus). Oecologia 2009, 161, 67–75, doi:10.1007/s00442-009-1361-6.
[13]  Altizer, S.M.; Oberhauser, K.; Geurts, K.A. Transmission of the protozoan parasite, Ophryocystis elektroscirrha, in monarch butterfly populations. In The Monarch Butterfly. Biology and Conservation; Oberhauser, K., Solensky, M., Eds.; Cornell University Press: Ithaca, NY, USA, 2004.
[14]  Leong, K.L.H.; Kaya, H.K.; Yoshimura, M.A.; Frey, D. The occurrence and effect of a protozoan parasite, Ophryocystis elektroscirrha (Neogregarinida: Ophryocystidae) on overwintering monarch butterflies, Danaus plexippus (Lepidoptera: Danaidae) from two California wintering sites. Ecol. Entomol. 1992, 17, 338–342, doi:10.1111/j.1365-2311.1992.tb01067.x.
[15]  Leong, K.L.H.; Yoshimura, M.A.; Kaya, H.K.; Williams, H. Instar susceptibility of the monarch butterfly (Danaus plexippus) to the neogregarine parasite, Ophryocystis elektroscirrha. J. Invert. Pathol. 1997, 69, 79–83.
[16]  Altizer, S.M.; Oberhauser, K. Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus). J. Invert. Pathol. 1999, 74, 76–88, doi:10.1006/jipa.1999.4853.
[17]  Bradley, C.A.; Altizer, S. Parasites hinder monarch butterfly flight: Implications for disease spread in migratory hosts. Ecol. Lett. 2005, 8, 290–300, doi:10.1111/j.1461-0248.2005.00722.x.
[18]  de Roode, J.C.; Gold, L.R.; Altizer, S. Virulence determinants in a natural butterfly-parasite system. Parasitology 2007, 134, 657–668, doi:10.1017/S0031182006002009.
[19]  Lindsey, E.; Altizer, S. Sex differences in immune defences and response to parasitism in monarch butterflies. Evol. Ecol. 2009, 23, 607–620, doi:10.1007/s10682-008-9258-0.
[20]  de Roode, J.C.; Yates, A.J.; Altizer, S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occuring butterfly parasite. Proc. Nat. Acad. Sci. USA 2008, 105, 7489–7494, doi:10.1073/pnas.0710909105.
[21]  Altizer, S.M.; Oberhauser, K.; Brower, L.P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecol. Entomol. 2000, 25, 125–139, doi:10.1046/j.1365-2311.2000.00246.x.
[22]  de Roode, J.C.; Altizer, S. Host-parasite genetic interactions and virulence-transmission relationships in natural populations of monarch butterflies. Evolution 2010, 64, 502–514, doi:10.1111/j.1558-5646.2009.00845.x.
[23]  Lefevre, T.; Williams, A.J.; de Roode, J.C. Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proc. Biol. Sci. 2011, 278, 751–759, doi:10.1098/rspb.2010.1479.
[24]  Altizer, S.M. Migratory behaviour and host-parasite co-evolution in natural populations of monarch butterflies infected with a protozoan parasite. Evol. Ecol. Res. 2001, 3, 1–22.
[25]  Altizer, S.M.; De Roode, J.C. Monarch defense against a debilitating parasite: Resistance, immunity, and self-medication. In Monarchs in a Changing World: Biology and Conservation of An Iconic Insect; Oberhauser, K.S., Altizer, S.M., Nail, K., Eds.; Cornell University Press: Ithaca, NY, USA. in press.
[26]  Lyons, J.I.; Pierce, A.A.; Barribeau, S.M.; Sternberg, E.D.; Mongue, A.J.; de Roode, J.C. Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol. Ecol. 2012, 21, 3433–3444, doi:10.1111/j.1365-294X.2012.05613.x.
[27]  Altizer, S.; Davis, A.K. Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology. Evolution 2010, 64, 1018–1028, doi:10.1111/j.1558-5646.2010.00946.x.
[28]  Davis, A.K.; Farrey, B.; Altizer, S. Variation in thermally-induced melanism in monarch butterflies (Lepidoptera: Nymphalidae) from three North American populations. J. Therm. Biol. 2005, 30, 410–421, doi:10.1016/j.jtherbio.2005.04.003.
[29]  Davis, A.K.; Cope, N.; Smith, A.; Solensky, M.J. Wing color predicts future mating success in male monarch butterflies. Ann. Entomol. Soc. Am. 2007, 100, 339–344, doi:10.1603/0013-8746(2007)100[339:WCPFMS]2.0.CO;2.
[30]  Davis, A.K. University of Georgia, Athens, GA, USA, Unpublished Work, 2010.
[31]  Davis, A.K.; Chi, J.; Bradley, C.A.; Altizer, S. The redder the better: wing color predicts flight performance in monarch butterflies. PloS One 2012, 7, e41323.
[32]  Davis, A.K. Gender and size-based variation in wing color in large milkweed bugs (Oncopeltus fasciatus) in Georgia. Southeast. Nat. 2009, 8, 723–732, doi:10.1656/058.008.0413.
[33]  Statistica. Statistica version 6.1, Statsoft Inc, Tulsa, Oklahoma, USA, 2003.
[34]  Davis, A.K. Wing color of monarch butterflies (Danaus plexippus) in eastern North America across life stages: Migrants are “redder” than breeding and overwintering stages. Psyche 2009, 2009, doi:10.1155/2009/705780.
[35]  Fischer, M.W.F.; Stolze-Rybczynski, J.L.; Davis, D.J.; Cui, Y.L.; Money, N.P. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion. Fungal Biol. 2010, 114, 943–948, doi:10.1016/j.funbio.2010.09.003.
[36]  de Roode, J.C.; Pedersen, A.B.; Hunter, M.D.; Altizer, S. Host plant species affects virulence in monarch butterfly parasites. J. Anim. Ecol. 2008, 77, 120–126, doi:10.1111/j.1365-2656.2007.01305.x.
[37]  Nijhout, H.F. The Development and Evolution of Buttterfly Wing Patterns; Smithsonian Institution Press: Washington, DC, USA, 1991; p. 297.
[38]  Shostak, A.W.; Dick, T.A. Effect of food intake by Cyclops bicuspidatus thomasi (Copepoda) on growth of Proceroids of Triaenophorus crassus (Pseudophyllidea) and on host fecundity. Am. Midl. Nat. 1986, 115, 225–233, doi:10.2307/2425858.
[39]  Pulkkinen, K.; Ebert, D. Host starvation decreases parasite load and mean host size in experimental populations. Ecology 2004, 85, 823–833, doi:10.1890/03-0185.
[40]  Weseloh, R.M. Effect of size, stress, and ligation of gypsy moth (Lepidoptera: Lymantriidae) larvae on development of the tachinid parasite Compsilura concinnata meigen (Diptera: Tachinidae). Ann. Entomol. Soc. Am. 1984, 77, 423–428.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133