全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle

DOI: 10.3390/insects4030357

Keywords: insect epicuticle, entomopathogenic fungi, virulence, host defense, co?evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a)?hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is “passaged” through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the “action on the surface” may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms underlying this interaction can shed light on the ecology and evolution of virulence and can be used for rational design strategies at increasing the effectiveness of entomopathogenic fungi for pest control in field applications.

References

[1]  Porter, R. Bassi, a bicentennial (1773–1973). Bacteriol. Rev. 1973, 37, 284–288.
[2]  Xiao, G.; Ying, S.H.; Zheng, P.; Wang, Z.L.; Zhang, S.; Xie, X.Q.; Shang, Y.; St Leger, R.J.; Zhao, G.P.; Wang, C.; et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2012, 2, 483.
[3]  Zheng, P.; Xia, Y.L.; Xiao, G.H.; Xiong, C.H.; Hu, X.; Zhang, S.W.; Zheng, H.J.; Huang, Y.; Zhou, Y.; Wang, S.Y.; et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biol. 2011, 12, doi:10.1186/gb-2011-12-11-r116.
[4]  Zheng, P.; Xia, Y.L.; Zhang, S.W.; Wang, C.S. Genetics of Cordyceps and related fungi. Appl. Microbiol. Biotechnol. 2013, 97, 2797–2804, doi:10.1007/s00253-013-4771-7.
[5]  Vilcinskas, A. Coevolution between pathogen-derived proteinases and proteinase inhibitors of host insects. Virulence 2010, 1, 206–214, doi:10.4161/viru.1.3.12072.
[6]  Fang, W.G.; Feng, J.; Fan, Y.H.; Zhang, Y.J.; Bidochka, M.J.; Leger, R.J.S.; Pei, Y. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J. Invertebr. Pathol. 2009, 102, 155–159, doi:10.1016/j.jip.2009.07.013.
[7]  Zhang, Y.J.; Feng, M.G.; Fan, Y.H.; Luo, Z.B.; Yang, X.Y.; Wu, D.; Pei, Y. A cuticle-degrading protease (CDEP-1) of Beauveria bassiana enhances virulence. Biocontr. Sci. Technol. 2008, 18, 551–563.
[8]  Fan, Y.H.; Fang, W.G.; Guo, S.J.; Pei, X.Q.; Zhang, Y.J.; Xiao, Y.H.; Li, D.M.; Jin, K.; Bidochka, M.J.; Pei, Y. Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl. Environ. Microbiol. 2007, 73, 295–302, doi:10.1128/AEM.01974-06.
[9]  Kirkland, B.H.; Eisa, A.; Keyhani, N.O. Oxalic acid as a fungal acaracidal virulence factor. J. Med. Entomol. 2005, 42, 346–351, doi:10.1603/0022-2585(2005)042[0346:OAAAFA]2.0.CO;2.
[10]  Bidochka, M.J.; Khachatourians, G.G. The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. J. Invertebr. Pathol. 1991, 58, 106–117, doi:10.1016/0022-2011(91)90168-P.
[11]  Nelson, D.R.; Blomquist, G.J. Insect waxes. In Waxes: Chemistry, Molecular Biology, and Functions; Hamilton, R.J., Ed.; The Oily Press, LTD: Dundee, Scotland, UK, 1995; pp. 1–90.
[12]  Renobales, M.d.; Nelson, D.R.; Blomquist, G.J. Cuticular lipids. In Physiology of the Insect Epidermis; Binnington, K., Retnakaran, A., Eds.; CSIRO: Melbourne, Australia, 1991.
[13]  Boucias, D.; Pendland, J. Attachment of mycopathogens to cuticle. In The Fungal Spore and Disease Initiation in Plants and Animals; Cole, G.T., Hoch, H.C., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 101–127.
[14]  Boucias, D.G.; Pendland, J.C.; Latge, J.P. Nonspecific factors involved in attachment of entomopathogenic Deuteromycetes to host insect cuticle. Appl. Environ. Microbiol. 1988, 54, 1795–1805.
[15]  Holder, D.J.; Keyhani, N.O. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl. Environ. Microbiol. 2005, 71, 5260–5266, doi:10.1128/AEM.71.9.5260-5266.2005.
[16]  Holder, D.J.; Kirkland, B.H.; Lewis, M.W.; Keyhani, N.O. Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 2007, 153, 3448–3457, doi:10.1099/mic.0.2007/008524-0.
[17]  Zhang, S.Z.; Xia, Y.X.; Kim, B.; Keyhani, N.O. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol. Microbiol. 2011, 80, 811–826, doi:10.1111/j.1365-2958.2011.07613.x.
[18]  Cho, E.M.; Kirkland, B.H.; Holder, D.J.; Keyhani, N.O. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 2007, 153, 3438–3447, doi:10.1099/mic.0.2007/008532-0.
[19]  Wang, C.S.; St Leger, R.J. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 2007, 6, 808–816, doi:10.1128/EC.00409-06.
[20]  Wanchoo, A.; Lewis, M.W.; Keyhani, N.O. Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology 2009, 155, 3121–3133, doi:10.1099/mic.0.029157-0.
[21]  Howard, R.W.; Blomquist, G.J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Ann. Rev. Entomol. 2005, 50, 371–393, doi:10.1146/annurev.ento.50.071803.130359.
[22]  Andersen, S.O. Insect cuticular sclerotization: A review. Insect Biochem. Mol. Biol. 2010, 40, 166–178, doi:10.1016/j.ibmb.2009.10.007.
[23]  Lockey, K.H. Lipids of the insect cuticle: Origin, composition, and function. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1988, 89B, 595–645.
[24]  Zhang, S.; Widemann, E.; Bernard, G.; Lesot, A.; Pinot, F.; Pedrini, N.; Keyhani, N.O. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J. Biol. Chem. 2012, 287, 13477–13486.
[25]  Pedrini, N.; Zhang, S.; Juarez, M.P.; Keyhani, N.O. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology 2010, 156, 2549–2557, doi:10.1099/mic.0.039735-0.
[26]  Stleger, R.J.; Cooper, R.M.; Charnley, A.K. Utilization of alkanes by entomopathogenic fungi. J. Invertebr. Pathol. 1988, 52, 356–359, doi:10.1016/0022-2011(88)90147-4.
[27]  Napolitano, R.; Juarez, M.P. Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch. Biochem. Biophys. 1997, 344, 208–214, doi:10.1006/abbi.1997.0163.
[28]  Crespo, R.; Juarez, M.P.; Cafferata, L.F.R. Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia 2000, 92, 528–536, doi:10.2307/3761512.
[29]  Crespo, R.; Pedrini, N.; Juarez, M.P.; Dal Bello, G.M. Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiol. Res. 2008, 163, 148–151, doi:10.1016/j.micres.2006.03.013.
[30]  Pedrini, N.; Juárez, M.; Crespo, R.; de Alaniz, M. Clues on the role of Beauveria bassiana catalases in alkane degradation events. Mycologia 2006, 98, 528–534, doi:10.3852/mycologia.98.4.528.
[31]  Pedrini, N.; Crespo, R.; Juarez, M.P. Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 2007, 146, 124–137, doi:10.1016/j.cbpc.2006.08.003.
[32]  Pedrini, N.; Ortiz-Urquiza, A.; Huarte-Bonnet, C.; Zhang, S.; Keyhani, N.O. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: Hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 2013, 4, 24.
[33]  Lida, T.; Sumita, T.; Ohta, A.; Takagi, M. The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: Cloning and characterization of genes coding for new CYP52 family members. Yeast 2000, 16, 1077–1087, doi:10.1002/1097-0061(20000915)16:12<1077::AID-YEA601>3.0.CO;2-K.
[34]  Wang, Z.L.; Zhang, L.B.; Ying, S.H.; Feng, M.G. Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ. Microbiol. 2013, 15, 409–418, doi:10.1111/j.1462-2920.2012.02848.x.
[35]  Da Silva, W.O.B.; Santi, L.; Correa, A.P.F.; Silva, L.A.D.; Bresciani, F.R.; Schrank, A.; Vainstein, M.H. The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fungal Biol. 2010, 114, 911–916, doi:10.1016/j.funbio.2010.08.007.
[36]  Crespo, R.; Juarez, M.P.; Dal Bello, G.M.; Padin, S.; Fernandez, G.C.; Pedrini, N. Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. Biocontrol 2002, 47, 685–696, doi:10.1023/A:1020545613148.
[37]  Jarrold, S.L.; Moore, D.; Potter, U.; Charnley, A.K. The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycol. Res. 2007, 111, 240–249, doi:10.1016/j.mycres.2006.10.007.
[38]  Lecuona, R.; Riba, G.; Cassier, P.; Clement, J.L. Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J. Invertebr. Pathol. 1991, 58, 10–18, doi:10.1016/0022-2011(91)90156-K.
[39]  Boucias, D.G.; Pendland, J.C. Nutritional requirements for conidial germination of several host range pathotypes of the entomopathogenic fungus Nomuraea rileyi. J. Invertebr. Pathol. 1984, 43, 288–292, doi:10.1016/0022-2011(84)90153-8.
[40]  Akbar, W.; Lord, J.C.; Nechols, J.R.; Howard, R.W. Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J. Econ. Entomol. 2004, 97, 273–280, doi:10.1603/0022-0493-97.2.273.
[41]  Stephou, V.K.; Tjamos, S.E.; Paplomatas, E.J.; Athanassiou, C.G. Transformation and attachment of Beauveria bassiana conidia on the cuticle of Tribolium confusum and Sitophilus oryzae in conjunction with diatomaceous earth. J. Pest Sci. 2012, 85, 387–394.
[42]  Lord, J.C.; Howard, R.W. A proposed role for the cuticular fatty amides of Liposcelis bostrychophila (Psocoptera: Liposcelidae) in preventing adhesion of entomopathogenic fungi with dry-conidia. Mycopathologia 2004, 158, 211–217, doi:10.1023/B:MYCO.0000041837.29478.78.
[43]  Sosa-Gomez, D.R.; Boucias, D.G.; Nation, J.L. Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. J. Invertebr. Pathol. 1997, 69, 31–39, doi:10.1006/jipa.1996.4619.
[44]  Smith, R.J.; Grula, E.A. Toxic components on the larval surface of the Corn-Earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. J. Invertebr. Pathol. 1982, 39, 15–22, doi:10.1016/0022-2011(82)90153-7.
[45]  Gross, J.; Schumacher, K.; Schmidtberg, H.; Vilcinskas, A. Protected by fumigants: Beetle perfumes in antimicrobial defense. J. Chem. Ecol. 2008, 34, 179–188, doi:10.1007/s10886-007-9416-9.
[46]  Gross, J.; Muller, C.; Vilcinskas, A.; Hilker, M. Antimicrobial activity of exocrine glandular secretions, hemolymph, and larval regurgitate of the mustard leaf beetle Phaedon cochlearia. J. Invertebr. Pathol. 1998, 72, 296–303, doi:10.1006/jipa.1998.4781.
[47]  Saito, T.; Aoki, J. Toxicity of free fatty acids on the larval surfaces of 2 Lepidopterous insects towards Beauveria bassiana (Bals) Vuill and Paecilomyces fumosoroseus (Wize) Brown Et Smith (Deuteromycetes, Moniliales). Appl. Entomol. Zool. 1983, 18, 225–233.
[48]  Urbanek, A.; Szadziewski, R.; Stepnowski, P.; Boros-Majewska, J.; Gabriel, I.; Dawgul, M.; Kamysz, W.; Sosnowska, D.; Golebiowski, M. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae). J. Insect Physiol. 2012, 58, 1265–1276, doi:10.1016/j.jinsphys.2012.06.014.
[49]  Lecuona, R.; Clement, J.L.; Riba, G.; Joulie, C.; Juarez, P. Spore germination and hyphal growth of Beauveria spp. on insect lipids. J. Econ. Entomol. 1997, 90, 119–123.
[50]  Kerwin, J.L. Fatty acid regulation of the germination of Erynia variabilis conidia on adults and puparia of the lesser housefly, Fannia canicularis. Can. J. Microbiol. 1984, 30, 158–161, doi:10.1139/m84-025.
[51]  Latge, J.P.; Sampedro, L.; Brey, P.; Diaquin, M. Aggressiveness of Conidiobolus obscurus against the pea aphid - influence of cuticular extracts on ballistospore germination of aggressive and nonaggressive strains. J. Gen. Microbiol. 1987, 133, 1987–1997.
[52]  Degenkolb, T.; During, R.A.; Vilcinskas, A. Secondary metabolites released by the burying beetle Nicrophorus vespilloides: Chemical analyses and possible ecological functions. J. Chem. Ecol. 2011, 37, 724–735, doi:10.1007/s10886-011-9978-4.
[53]  Kirkland, B.H.; Cho, E.M.; Keyhani, N.O. Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari: Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biol. Contr. 2004, 31, 414–421, doi:10.1016/j.biocontrol.2004.07.007.
[54]  Ment, D.; Churchill, A.C.L.; Gindin, G.; Belausov, E.; Glazer, I.; Rehner, S.A.; Rot, A.; Donzelli, B.G.G.; Samish, M. Resistant ticks inhibit Metarhizium infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface. Environ. Microbiol. 2012, 14, 1570–1583, doi:10.1111/j.1462-2920.2012.02747.x.
[55]  Golebiowski, M.; Bogus, M.I.; Paszkiewicz, M.; Stepnowski, P. Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Anal. Bioanal. Chem. 2011, 399, 3177–3191, doi:10.1007/s00216-010-4439-4.
[56]  Storey, G.K.; Vandermeer, R.K.; Boucias, D.G.; Mccoy, C.W. Effect of fire ant (Solenopsis invicta) venom alkaloids on the invitro germination and development of selected entomogenous fungi. J. Invertebr. Pathol. 1991, 58, 88–95, doi:10.1016/0022-2011(91)90166-N.
[57]  Storey, G.K.; Aneshansley, D.J.; Eisner, T. Parentally provided alkaloid does not protect eggs of Utetheisa ornatrix (Lepidoptera, Arctiidae) against entomopathogenic fungi. J. Chem. Ecol. 1991, 17, 687–693, doi:10.1007/BF00994192.
[58]  Hamilton, C.; Lay, F.; Bulmer, M.S. Subterranean termite prophylactic secretions and external antifungal defenses. J. Insect Physiol. 2011, 57, 1259–1266, doi:10.1016/j.jinsphys.2011.05.016.
[59]  Bulmer, M.S.; Bachelet, I.; Raman, R.; Rosengaus, R.B.; Sasisekharan, R. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl. Acad. Sci. USA 2009, 106, 12652–12657, doi:10.1073/pnas.0904063106.
[60]  Hamilton, C.; Bulmer, M.S. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Dev. Comp. Immunol. 2012, 36, 372–377, doi:10.1016/j.dci.2011.07.008.
[61]  Villaverde, M.L.; Girotti, J.R.; Mijailovsky, S.J.; Pedrini, N.; Juarez, M.P. Volatile secretions and epicuticular hydrocarbons of the beetle Ulomoides dermestoides. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 154, 381–386, doi:10.1016/j.cbpb.2009.08.001.
[62]  Stleger, R.J.; Cooper, R.M.; Charnley, A.K. The Effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. J. Invertebr. Pathol. 1988, 52, 459–470, doi:10.1016/0022-2011(88)90059-6.
[63]  Wilson, K.; Cotter, S.C.; Reeson, A.F.; Pell, J.K. Melanism and disease resistance in insects. Ecol. Lett. 2001, 4, 637–649, doi:10.1046/j.1461-0248.2001.00279.x.
[64]  Vandenberg, J.D.; Ramos, M.; Altre, J.A. Dose-response and age- and temperature-related susceptibility of the diamondback moth (Lepidoptera: Plutellidae) to two isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Environ. Entomol. 1998, 27, 1017–1021.
[65]  Kim, J.J.; Roberts, D.W. The relationship between conidial dose, moulting and insect developmental stage on the susceptibility of cotton aphid, Aphis gossypii, to conidia of Lecanicillium attenuatum, an entomopathogenic fungus. Biocontr. Sci. Tech. 2012, 22, 319–331, doi:10.1080/09583157.2012.656580.
[66]  Samuels, R.I.; Reynolds, S.E. Proteinase inhibitors from the molting fluid of the pharate adult tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 2000, 43, 33–43, doi:10.1002/(SICI)1520-6327(200001)43:1<33::AID-ARCH5>3.0.CO;2-N.
[67]  Milner, R.J.; Prior, C. Susceptibility of the Australian plague locust, Chortoicetes terminifera, and the wingless grasshopper, Phaulacridium vittatum, to the fungi Metarhizium spp. Biol. Contr. 1994, 4, 132–137, doi:10.1006/bcon.1994.1021.
[68]  Kiuchi, M.; Yasui, H.; Hayasaka, S.; Kamimura, M. Entomogenous fungus Nomuraea rileyi inhibits host insect molting by C22-oxidizing inactivation of hemolymph ecdysteroids. Arch. Insect Biochem. Physiol. 2003, 52, 35–44, doi:10.1002/arch.10060.
[69]  Zindel, R.; Gottlieb, Y.; Aebi, A. Arthropod symbioses: A neglected parameter in pest- and disease-control programmes. J. Appl. Ecol. 2011, 48, 864–872, doi:10.1111/j.1365-2664.2011.01984.x.
[70]  Panteleev, D.Y.; Goryacheva, I.I.; Andrianov, B.V.; Reznik, N.L.; Lazebny, O.E.; Kulikov, A.M. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ. J. Genet. 2007, 43, 1066–1069, doi:10.1134/S1022795407090153.
[71]  Kaltenpoth, M.; Gottler, W.; Herzner, G.; Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 2005, 15, 475–479, doi:10.1016/j.cub.2004.12.084.
[72]  Boucias, D.G.; Garcia-Maruniak, A.; Cherry, R.; Lu, H.J.; Maruniak, J.E.; Lietze, V.U. Detection and characterization of bacterial symbionts in the Heteropteran, Blissus insularis. FEMS Microbiol. Ecol. 2012, 82, 629–641, doi:10.1111/j.1574-6941.2012.01433.x.
[73]  Folgarait, P.; Gorosito, N.; Poulsen, M.; Currie, C.R. Preliminary in vitro insights into the use of natural fungal pathogens of leaf-cutting ants as biocontrol agents. Curr. Microbiol. 2011, 63, 250–258, doi:10.1007/s00284-011-9944-y.
[74]  Little, A.E.F.; Murakami, T.; Mueller, U.G.; Currie, C.R. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol. Lett. 2006, 2, 12–16, doi:10.1098/rsbl.2005.0371.
[75]  Tragust, S.; Mitteregger, B.; Barone, V.; Konrad, M.; Ugelvig, L.V.; Cremer, S. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr. Biol. 2013, 23, 76–82, doi:10.1016/j.cub.2012.11.034.
[76]  Shimizu, S.; Yamaji, M. Effect of density of the termite, Reticulitermes speratus Kolbe (Isoptera : Rhinotermitidae), on the susceptibilities to Metarhizium anisopliae. Appl. Entomol. Zool. 2003, 38, 125–130, doi:10.1303/aez.2003.125.
[77]  Yanagawa, A.; Yokohari, F.; Shimizu, S. Defense mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J. Invertebr. Pathol. 2008, 97, 165–170, doi:10.1016/j.jip.2007.09.005.
[78]  Yanagawa, A.; Fujiwara-Tsujii, N.; Akino, T.; Yoshimura, T.; Yanagawa, T.; Shimizu, S. Odor aversion and pathogen-removal efficiency in grooming behavior of the termite Coptotermes formosanus. PLoS One 2012, 7, e47412.
[79]  Yanagawa, A.; Yokohari, F.; Shimizu, S. The role of antennae in removing entomopathogenic fungi from cuticle of the termite, Coptotermes formosanus. J. Insect Sci. 2009, 9, doi:10.1673/031.009.0601.
[80]  Chouvenc, T.; Su, N.Y. Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events: Limits and potential for biological control. J. Econ. Entomol. 2010, 103, 1327–1337, doi:10.1603/EC09407.
[81]  Heinrich, B. Insect thermoregulation. Endeavour 1995, 19, 28–33, doi:10.1016/0160-9327(95)98891-I.
[82]  Gardner, S.N.; Thomas, M.B. Costs and benefits of fighting infection in locusts. Evol. Ecol. Res. 2002, 4, 109–131.
[83]  Carruthers, R.I.; Larkin, T.S.; Firstencel, H.; Feng, Z.D. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 1992, 73, 190–204, doi:10.2307/1938731.
[84]  Chown, S.L.; Addo-Bediako, A.; Gaston, K.J. Physiological variation in insects: Large-scale patterns and their implications. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 131, 587–602, doi:10.1016/S1096-4959(02)00017-9.
[85]  Wang, Y.D.; Yang, P.C.; Cui, F.; Kang, L. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. Plos Pathogens 2013, 9, e1003102, doi:10.1371/journal.ppat.1003102.
[86]  Schwarz, J.J.; Punja, Z.; Goettel, M.; Gries, G. Do Western boxelder bugs sunbathe for sanitation? Inferences from in vitro experiments. Entomol. Exp. Appl. 2012, 145, 38–49, doi:10.1111/j.1570-7458.2012.01314.x.
[87]  Fernandes, E.K.K.; Rangel, D.E.N.; Moraes, A.M.L.; Bittencourt, V.R.E.P.; Roberts, D.W. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J. Invertebr. Pathol. 2007, 96, 237–243, doi:10.1016/j.jip.2007.05.007.
[88]  Rangel, D.E.N.; Braga, G.U.L.; Flint, S.D.; Anderson, A.J.; Roberts, D.W. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. J. Invertebr. Pathol. 2004, 87, 77–83, doi:10.1016/j.jip.2004.06.007.
[89]  Sun, Q.; Zhou, X.G. Corpse management in social insects. Int. J. Biol. Sci. 2013, 9, 313–321, doi:10.7150/ijbs.5781.
[90]  Quintela, E.D.; McCoy, C.W. Conidial attachment of Metarhizium anisopliae and Beauveria bassiana to the larval cuticle of Diaprepes abbreviatus (Coleoptera: Curculionidae) treated with imidacloprid. J. Invertebr. Pathol. 1998, 72, 220–230, doi:10.1006/jipa.1998.4791.
[91]  Wilson, K. Evolutionary ecology of insect host-parasite interactions: An ecological immunology perspective. In Insect Evolutionary Ecology; Fellowes, M., Holloway, G., Rolff, J., Eds.; CABI Publishing: Wallingford, Oxon, UK, 2005; pp. 289–341.
[92]  Quintela, E.D.; McCoy, C.W. Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J. Econ. Entomol. 1998, 91, 110–122.
[93]  Paula, A.R.; Carolino, A.T.; Paula, C.O.; Samuels, R.I. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 2011, 4, doi:10.1186/1756-3305-4-8.
[94]  Galvanho, J.P.; Carrera, M.P.; Moreira, D.D.O.; Erthal, M.; Silva, C.P.; Samuels, R.I. Imidacloprid inhibits behavioral defences of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J. Insect. Behav. 2013, 26, 1–13, doi:10.1007/s10905-012-9328-6.
[95]  Fan, Y.; Pereira, R.M.; Kilic, E.; Casella, G.; Keyhani, N.O. Pyrokinin beta-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of beta-NP in a mycoinsecticide increases its virulence. PLoS One 2012, 7, e26924.
[96]  de Crecy, E.; Jaronski, S.; Lyons, B.; Lyons, T.J.; Keyhani, N.O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 2009, 9, doi:10.1186/1472-6750-9-74.
[97]  Brito, E.S.; de Paula, A.R.; Vieira, L.P.; Dolinski, C.; Samuels, R.I. Combining vegetable oil and sub-lethal concentrations of Imidacloprid with Beauveria bassiana and Metarhizium anisopliae against adult guava weevil Conotrachelus psidii (Coleoptera: Curculionidae). Biocontr. Sci. Tech. 2008, 18, 665–673, doi:10.1080/09583150802195965.
[98]  Cohen, E.; Joseph, T. Photostabilization of Beauveria bassiana conidia using anionic dyes. Appl. Clay Sci. 2009, 42, 569–574, doi:10.1016/j.clay.2008.03.013.
[99]  Gosselin, M.E.; Belair, G.; Simard, L.; Brodeur, J. Toxicity of spinosad and Beauveria bassiana to the black cutworm, and the additivity of subletal doses. Biocontr. Sci. Tech. 2009, 19, 201–217, doi:10.1080/09583150802663285.
[100]  Inglis, G.D.; Johnson, D.L.; Cheng, K.J.; Goettel, M.S. Use of pathogen combinations to overcome the constraints of temperature on entomopathogenic hyphomycetes against grasshoppers. Biol. Contr. 1997, 8, 143–152, doi:10.1006/bcon.1996.0495.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133