Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests.
References
[1]
Mohandass, S.; Arthur, F.H.; Zhu, K.Y.; Throne, J.E. Biology and management of Plodia interpunctella (Lepidoptera: Pyralidae) in stored products. J. Stored Prod. Res. 2007, 43, 302–311, doi:10.1016/j.jspr.2006.08.002.
[2]
Nègre, V.; H?telier, T.; Volkoff, A.-N.; Gimenez, S.; Cousserans, F.; Mita, K.; Sabau, X.; Rocher, J.; López-Ferber, M.; D’Alen?on, E.; et al. SPODOBASE: An EST database for the lepidopteran crop pest Spodoptera. BMC Bioinformatics 2006, 7, 322, doi:10.1186/1471-2105-7-322.
[3]
Vail, P.V.; Hoffman, D.F.; Tebbets, J.S. Effects of a fluorescent brightener on the activity of Anagrapha falcifera (Lepidoptera: Noctuidae) nuclear Polyhedrosis virus to four Noctuid pests. Biolog. Contr. 1996, 125, 121–125.
[4]
Cordero, R.J.; Kuhar, T.P.; Speese, J.; Youngman, R.; Lewis, E.; Boomquist, J.; Kok, L.T.; Bratsch, A. Field efficacy of insecticides for control of lepidopteran pests on collards in Virginia. Plant Health Progr 2006, doi:10.1094/PHP-2006-0105-01-RS.
[5]
James, R.R.; Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 2012, 109, 175–182, doi:10.1016/j.jip.2011.12.005.
[6]
Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106, doi:10.1146/annurev.ento.52.110405.091440.
[7]
Zibaee, A.; Bandani, A.R. Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull. Entomol. Res. 2010, 100, 185–196, doi:10.1017/S0007485309990149.
[8]
Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A.; Warthen, D.J. Immune-depression in Rhodnius prolixus induced by the growth inhibitor, azadirachtin. J. Insect Physiol. 1991, 37, 771–777, doi:10.1016/0022-1910(91)90112-D.
[9]
Franssens, V.; Smagghe, G.; Simonet, G.; Claeys, I.; Breugelmans, B.; De Loof, A.; Vanden Broeck, J. 20-Hydroxyecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Dev. Comp. Immunol. 2006, 30, 735–740, doi:10.1016/j.dci.2005.10.010.
[10]
Delpuech, J.-M.; Frey, F.; Carton, Y. Action of insecticides on the cellular immune reaction of Drosophila melanogaster against the parasitoid Leptopilina boulardi. Environ. Toxicol. Chem. 1996, 15, 2267–2271.
[11]
Babu, S.R.; Subrahmanyam, B. Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth and development of Helicoverpa armigera (Hübner). Pestic. Biochem. Physiol. 2010, 98, 349–358, doi:10.1016/j.pestbp.2010.07.008.
[12]
Nasr, H.M.; Badawy, M.E.I.; Rabea, E.I. Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leafworm Spodoptera littorali. Pestic. Biochem. Physiol. 2010, 98, 198–205, doi:10.1016/j.pestbp.2010.06.007.
[13]
Quintela, E.D.; McCoy, C. Pathogenicity enhancement of Metarhizium anisopliae and Beauveria bassiana to first instars of Diaprepes abbreviatus (Coleoptera: Curculionidae) with sublethal doses of imidacloprid. Environ. Entomol. 1997, 26, 1173–1182.
[14]
Koppenh?fer, A.M.; Grewal, P.S.; Kaya, H.K. Synergism of imidacloprid and entomopathogenic nematodes against white grubs: The mechanism. Entomol. Exp. Appl. 2000, 94, 283–293.
[15]
Lazzaro, B.P. Natural selection on the Drosophila antimicrobial immune system. Curr. Opin. Microbiol. 2008, 11, 284–289, doi:10.1016/j.mib.2008.05.001.
Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002, 32, 1295–1309, doi:10.1016/S0965-1748(02)00092-9.
[18]
Marmaras, V.J.; Lampropoulou, M. Regulators and signalling in insect haemocyte immunity. Cell. Signal. 2009, 21, 186–195, doi:10.1016/j.cellsig.2008.08.014.
[19]
Jiggins, F.M.; Kim, K.W. A screen for immunity genes evolving under positive selection in Drosophila. J. Evol. Biol. 2007, 20, 965–970, doi:10.1111/j.1420-9101.2007.01305.x.
[20]
Sackton, T.B.; Lazzaro, B.P.; Schlenke, T.A.; Evans, J.D.; Hultmark, D.; Clark, A.G. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 2007, 39, 1461–1468, doi:10.1038/ng.2007.60.
[21]
Keebaugh, E.S.; Schlenke, T.A. Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack. Mol. Biol. Evol. 2012, 29, 565–577, doi:10.1093/molbev/msr191.
[22]
Sackton, T.B.; Clark, A.G. Comparative profiling of the transcriptional response to infection in two species of Drosophila by short-read cDNA sequencing. BMC Genomics 2009, 10, 259–275, doi:10.1186/1471-2164-10-259.
[23]
Park, Y.; Herbert, E.E.; Cowles, C.E.; Cowles, K.N.; Menard, M.L.; Orchard, S.S.; Goodrich-Blair, H. Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Cell. Microbiol. 2007, 9, 645–656, doi:10.1111/j.1462-5822.2006.00815.x.
[24]
Ji, D.; Kim, Y. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 2004, 50, 489–496, doi:10.1016/j.jinsphys.2004.03.005.
[25]
Aymeric, J.-L.; Givaudan, A.; Duvic, B. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Mol. Immunol. 2010, 47, 2342–2348, doi:10.1016/j.molimm.2010.05.012.
[26]
Kearns, C.A. North American dipteran pollinators: Assessing their value and conservation status. Conserv. Ecol. 2001, 5, 1–10.
[27]
Ssymank, A.; Kearns, C.A.; Pape, T.; Thompson, C. Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 2007, 9, 86–89.
[28]
Bulmer, M.S.; Bachelet, I.; Raman, R.; Rosengaus, R.B.; Sasisekharan, R. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl. Acad. Sci. USA 2009, 106, 12652–12657, doi:10.1073/pnas.0904063106.
[29]
Clark, A.G.; Eisen, M.B.; Smith, D.R.; Bergman, C.M.; Oliver, B.; Markow, T.A.; Kaufman, T.C.; Kellis, M.; Gelbart, W.; Iyer, V.N.; et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007, 450, 203–218, doi:10.1038/nature06341.
[30]
Eleftherianos, I.; Millichap, P.J.; Ffrench-Constant, R.H.; Reynolds, S.E. RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Dev. Comp. Immunol. 2006, 30, 1099–1107, doi:10.1016/j.dci.2006.02.008.
[31]
Huvenne, H.; Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 2010, 56, 227–235, doi:10.1016/j.jinsphys.2009.10.004.
[32]
Zhang, S.; Gunaratna, R.T.; Zhang, X.; Najar, F.; Wang, Y.; Roe, B.; Jiang, H. Pyrosequencing-based expression profiling and identification of differentially regulated genes from Manduca sexta, a lepidopteran model insect. Insect Biochem. Mol. Biol. 2011, 41, 733–746.
[33]
International, T.; Genome, S. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1036–1045, doi:10.1016/j.ibmb.2008.11.004.
[34]
Tobacco Hornworm Genome Project. Available online: http://www.hgsc.bcm.tmc.edu/content/tobacco-hornworm-genome-project (accessed on 6 May 2013).
[35]
Gunaratna, R.T.; Jiang, H. A comprehensive analysis of the Manduca sexta immunotranscriptome. Dev. Comp. Immunol. 2013, 39, 388–398, doi:10.1016/j.dci.2012.10.004.
[36]
Xu, Q.; Lu, A.; Xiao, G.; Yang, B.; Zhang, J.; Li, X.; Guan, J.; Shao, Q.; Beerntsen, B.T.; Zhang, P.; et al. Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori. PLoS One 2012, 7, 1–14.
Zou, Z.; Najar, F.; Wang, Y.; Roe, B.; Jiang, H. Pyrosequence analysis of expressed sequence tags for Manduca sexta hemolymph proteins involved in immune responses. Insect Biochem. Mol. Biol. 2008, 38, 677–682, doi:10.1016/j.ibmb.2008.03.009.
[39]
Schmidt, O.; Theopold, U.; Strand, M. Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 2001, 23, 344–351, doi:10.1002/bies.1049.
[40]
Nappi, A.J.; Kohler, L.; Mastore, M.; Funzionale, B. Signaling pathways implicated in the cellular innate immune responses of Drosophila. Invertebrate Surviv. J. 2004, 1, 5–33.
[41]
Lamprou, I.; Tsakas, S.; Theodorou, G.L.; Karakantza, M.; Lampropoulou, M.; Marmaras, V.J. Uptake of LPS/E. coli/latex beads via distinct signalling pathways in medfly hemocytes: The role of MAP kinases activation and protein secretion. Biochim. Biophys. Acta 2005, 1744, 1–10, doi:10.1016/j.bbamcr.2004.09.031.
[42]
Sideri, M.; Tsakas, S.; Markoutsa, E.; Lampropoulou, M.; Marmaras, V.J. Innate immunity in insects: Surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes. Immunology 2008, 123, 528–537, doi:10.1111/j.1365-2567.2007.02722.x.
[43]
Bulet, P.; Hetru, C.; Dimarcq, J.L.; Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 1999, 23, 329–344, doi:10.1016/S0145-305X(99)00015-4.
[44]
Bulet, P.; St?cklin, R. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Pept. Lett. 2005, 12, 3–11, doi:10.2174/0929866053406011.
[45]
González-Santoyo, I.; Córdoba-Aguilar, A. Phenoloxidase: A key component of the insect immune system. Entomol. Exp. Appl. 2012, 142, 1–16, doi:10.1111/j.1570-7458.2011.01187.x.
[46]
Zhao, P.; Li, J.; Wang, Y.; Jiang, H. Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem. Mol. Biol. 2007, 37, 952–959, doi:10.1016/j.ibmb.2007.05.001.
[47]
Hoffmann, J.A. Phylogenetic perspectives in innate immunity. Science 1999, 284, 1313–1318, doi:10.1126/science.284.5418.1313.
Ma, C.; Kanost, M.R. A β-1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J. Biol. Chem. 2000, 275, 7505–7514, doi:10.1074/jbc.275.11.7505.
[57]
Fabrick, J.A.; Baker, J.E.; Kanost, M.R. cDNA cloning, purification, properties, and function of a β-1,3-glucan recognition protein from a pyralid moth, Plodia interpunctella. Insect Biochem. Mol. Biol. 2003, 33, 579–594, doi:10.1016/S0965-1748(03)00029-8.
[58]
Yu, X.; Kanost, M.R. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid: An immunoglobulin superfamily member from insects as a pattern-recognition receptor. Eur. J. Biochem. 2002, 1834, 1827–1834.
[59]
Eleftherianos, I.; G?k?en, F.; Felf?ldi, G.; Millichap, P.J.; Trenczek, T.E.; Ffrench-Constant, R.H.; Reynolds, S.E. The immunoglobulin family protein Hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta. Cell. Microbiol. 2007, 9, 1137–1147, doi:10.1111/j.1462-5822.2006.00855.x.
[60]
Ji, C.; Wang, Y.; Guo, X.; Hartson, S.; Jiang, H. A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, Manduca sexta. J. Biol. Chem. 2004, 279, 34101–34106, doi:10.1074/jbc.M404584200.
[61]
Hara, S.; Yamakawa, M. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 1995, 270, 29923–29927, doi:10.1074/jbc.270.50.29923.
[62]
Xu, X.-X.; Zhong, X.; Yi, H.-Y.; Yu, X.-Q. Manduca sexta gloverin binds microbial components and is active against bacteria and fungi. Dev. Comp. Immunol. 2012, 38, 275–284, doi:10.1016/j.dci.2012.06.012.
[63]
Chowdhury, S.; Taniai, K.; Hara, S.; Kadono-Okuda, K.; Kato, Y.; Yamamoto, M.; Xu, J.; Su Kyung, C.; Debnath, N.C.; Choi, H.K.; et al. cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 1995, 214, 271–278, doi:10.1006/bbrc.1995.2284.
[64]
Rao, X.-J.; Xu, X.-X.; Yu, X.-Q. Functional analysis of two lebocin-related proteins from Manduca sexta. Insect Biochem. Mol. Biol. 2012, 42, 231–239, doi:10.1016/j.ibmb.2011.12.005.
[65]
Hoffmann, J.A. The immune response of Drosophila. Nature 2003, 426, 33–38, doi:10.1038/nature02021.
[66]
Lemaitre, B.; Hoffmann, J.A. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743, doi:10.1146/annurev.immunol.25.022106.141615.
[67]
Ip, Y.T.; Reach, M.; Engstrom, Y.; Kadalayil, L.; Cai, H.; González-Crespo, S.; Tatei, K.; Levine, M. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 1993, 75, 753–763, doi:10.1016/0092-8674(93)90495-C.
[68]
Dushay, M.S.; Asling, B.; Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA 1996, 93, 10343–10347, doi:10.1073/pnas.93.19.10343.
[69]
Hedengren, M.; Asling, B.; Dushay, M.S.; Ando, I.; Ekengren, S.; Wihlborg, M.; Hultmark, D. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 1999, 4, 827–837, doi:10.1016/S1097-2765(00)80392-5.
[70]
Engstrom, Y.; Kadalayil, L.; Sun, S.-C.; Samakovlis, C.; Hultmark, D.; Faye, I. kB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 1993, 232, 327–333, doi:10.1006/jmbi.1993.1392.
[71]
St?ven, S.; Ando, I.; Kadalayil, L.; Engstr?m, Y.; Hultmark, D. Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 2000, 1, 347–352, doi:10.1093/embo-reports/kvd072.
[72]
Kappler, C.; Meister, M.; Lagueux, M.; Gateff, E.; Hoffmann, J.A.; Reichhart, J. Insect immunity. Two 17 bp repeats nesting a kB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenge Drosophila. EMBO J. 1993, 12, 1561–1568.
[73]
Ghosh, S.; May, M.J.; Kopp, E.B. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 16, 225–260, doi:10.1146/annurev.immunol.16.1.225.
[74]
Ryzhakov, G.; Teixeira, A.; Saliba, D.; Blazek, K.; Muta, T.; Ragoussis, J.; Udalova, I.A. Cross-species analysis reveals evolving and conserved features of the NF-κB proteins. J. Biol. Chem. 2013, 288, 11546–11554, doi:10.1074/jbc.M113.451153.
[75]
Rao, X.-J.; Xu, X.-X.; Yu, X.-Q. Manduca sexta moricin promoter elements can increase promoter activities of Drosophila melanogaster antimicrobial peptide genes. Insect Biochem. Mol. Biol. 2011, 41, 982–992, doi:10.1016/j.ibmb.2011.09.007.
[76]
Wang, Y.; Sumathipala, N.; Rayaprolu, S.; Jiang, H. Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a β-1,3-glucanase-related protein in Manduca sexta larval plasma. Insect Biochem. Mol. Biol. 2011, 41, 322–331, doi:10.1016/j.ibmb.2011.01.010.
[77]
Yoshida, H.; Ochiai, M.; Ashida, M. ?-1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochem. Biophys. Res. Commun. 1986, 141, 1177–1184, doi:10.1016/S0006-291X(86)80168-1.
[78]
Kang, D.; Liu, G.; Lundstr?m, A.; Gelius, E.; Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. USA 1998, 95, 10078–10082, doi:10.1073/pnas.95.17.10078.
[79]
Ferrandon, D.; Imler, J.-L.; Hoffmann, J.A. Sensing infection in Drosophila: Toll and beyond. Semin. Immunol. 2004, 16, 43–53, doi:10.1016/j.smim.2003.10.008.
[80]
Choe, K.-M.; Werner, T.; St?ven, S.; Hultmark, D.; Anderson, K.V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002, 296, 359–362, doi:10.1126/science.1070216.
[81]
Takehana, A.; Katsuyama, T.; Yano, T.; Oshima, Y.; Takada, H.; Aigaki, T.; Kurata, S. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larva. Proc. Natl. Acad. Sci. USA 2002, 99, 13705–13710, doi:10.1073/pnas.212301199.
[82]
Gottar, M.; Gobert, V.; Michel, T.; Belvin, M.; Duyk, G.; Hoffmann, J.A.; Ferrandon, D.; Royet, J. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002, 416, 640–644, doi:10.1038/nature734.
[83]
R?met, M.; Manfruelli, P.; Pearson, A.; Mathey-Prevot, B.; Ezekowitz, R.A.B. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 2002, 416, 644–648, doi:10.1038/nature735.
[84]
Gottar, M.; Gobert, V.; Matskevich, A.A.; Reichhart, J.M.; Wang, C.; Butt, T.M.; Belvin, M.; Hoffmann, J.A.; Ferrandon, D. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006, 127, 1425–1437, doi:10.1016/j.cell.2006.10.046.
[85]
Tanaka, H.; Yamakawa, M. Regulation of the innate immune responses in the silkworm, Bombyx mori. Invertebrate Surviv. J. 2011, 8, 59–69.
[86]
Dunn, P.E.; Dai, W.; Kanost, M.R.; Geng, C. Soluble peptidoglycan fragments stimulate antibacterial protein synthesis by fat body from larvae of Manduca sexta. Dev. Comp. Immunol. 1985, 9, 559–568, doi:10.1016/0145-305X(85)90019-9.
[87]
Kanost, M.R.; Dai, W.; Dunn, P.E. Peptidoglycan fragments elicit antibacterial protein synthesis in larvae of Manduca sexta. Arch. Insect Biochem. Physiol. 1988, 8, 147–164, doi:10.1002/arch.940080302.
[88]
Iketani, M.; Morishima, I. Induction of antibacterial protein synthesis by soluble peptidoglycan in isolated fat body from larvae of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 1993, 23, 913–917, doi:10.1016/0965-1748(93)90108-5.
[89]
Morishima, I.; Horiba, T.; Iketani, M.; Nishioka, E.; Yamano, Y. Parallel induction of cecropin and lysozyme in larvae of the silkworm, Bombyx mori. Dev. Comp. Immunol. 1995, 19, 357–363, doi:10.1016/0145-305X(95)00019-P.
[90]
Rao, X.-J.; Yu, X.-Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol. 2010, 34, 1119–1128, doi:10.1016/j.dci.2010.06.007.
[91]
Ochiai, M.; Ashida, M. A pattern recognition protein for peptidoglycan. J. Biol. Chem. 1999, 274, 11854–11858, doi:10.1074/jbc.274.17.11854.
[92]
Seitz, V.; Clermont, A.; Wedde, M.; Hummel, M.; Vilcinskas, A.; Schlatterer, K.; Podsiadlowski, L. Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev. Comp. Immunol. 2003, 27, 207–215, doi:10.1016/S0145-305X(02)00097-6.
[93]
Onoe, H.; Matsumoto, A.; Hashimoto, K.; Yamano, Y.; Morishima, I. Peptidoglycan recognition protein (PGRP) from eri-silkworm, Samia cynthia ricini; protein purification and induction of the gene expression. Comp. Biochem. Physiol. 2007, 147, 512–519, doi:10.1016/j.cbpb.2007.03.005.
[94]
Eum, J.H.; Seo, Y.R.; Yoe, S.M.; Kang, S.W.; Han, S.S. Analysis of the immune-inducible genes of Plutella xylostella using expressed sequence tags and cDNA microarray. Dev. Comp. Immunol. 2007, 31, 1107–1120, doi:10.1016/j.dci.2007.02.002.
[95]
Hughes, A.L. Evolution of the βGRP/GNBP/β-1,3-glucanase family of insects. Immunogenetics 2012, 64, 549–558, doi:10.1007/s00251-012-0610-8.
[96]
Kaneko, T.; Goldman, W.E.; Mellroth, P.; Steiner, H.; Fukase, K.; Kusumoto, S.; Harley, W.; Fox, A.; Golenbock, D.; Silverman, N. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 2004, 20, 637–649, doi:10.1016/S1074-7613(04)00104-9.
[97]
Tanaka, H.; Sagisaka, A.; Fujita, K.; Kaneko, Y.; Imanishi, S.; Yamakawa, M. Lipopolysaccharide elicits expression of immune-related genes in the silkworm, Bombyx mori. Insect Mol. Biol. 2009, 18, 71–75, doi:10.1111/j.1365-2583.2009.00851.x.
Watanabe, A.; Miyazawa, S.; Kitami, M.; Tabunoki, H.; Ueda, K.; Sato, R. Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: Mechanism of wide-range microorganism recognition and role in immunity. J. Immunol. 2006, 177, 4594–4604.
[100]
Koizumi, N.; Imai, Y.; Morozumi, A.; Imamura, M.; Kadotani, T.; Yaoi, K.; Iwahana, H.; Sato, R. Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte-mediated defense reaction against Gram-negative bacteria. J. Insect Physiol. 1999, 45, 853–859, doi:10.1016/S0022-1910(99)00069-4.
[101]
Yu, X.Q.; Gan, H.; Kanost, M.R. Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenoloxidase. Insect Biochem. Mol. Biol. 1999, 29, 585–597, doi:10.1016/S0965-1748(99)00036-3.
[102]
Yu, X.Q.; Kanost, M.R. Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to Gram-negative bacteria. J. Biol. Chem. 2000, 275, 37373–37381, doi:10.1074/jbc.M003021200.
[103]
Yu, X.-Q.; Tracy, M.E.; Ling, E.; Scholz, F.R.; Trenczek, T. A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes. Insect Biochem. Mol. Biol. 2005, 35, 285–295, doi:10.1016/j.ibmb.2005.01.004.
[104]
Yu, X.-Q.; Ling, E.; Tracy, M.E.; Zhu, Y. Immulectin-4 from the tobacco hornworm Manduca sexta binds to lipopolysaccharide and lipoteichoic acid. Insect Mol. Biol. 2006, 15, 119–128, doi:10.1111/j.1365-2583.2006.00618.x.
[105]
Jiang, H.; Ma, C.; Lu, Z.-Q.; Kanost, M.R. β-1,3-Glucan recognition protein-2 (βGRP-2) from Manduca sexta: An acute-phase protein that binds β-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect Biochem. Mol. Biol. 2004, 34, 89–100, doi:10.1016/j.ibmb.2003.09.006.
[106]
Wang, Y.; Jiang, H. Interaction of β-1,3-glucan with its recognition protein activates hemolymph proteinase 14, an initiation enzyme of the prophenoloxidase activation system in Manduca sexta. J. Biol. Chem. 2006, 281, 9271–9278, doi:10.1074/jbc.M513797200.
[107]
Ashok, Y. Drosophila Toll pathway: The new model. Sci. Signal. 2009, 2, 1–2, doi:10.1126/scisignal.252jc1.
[108]
Hetru, C.; Hoffmann, J.A. NF-kappaB in the immune response of Drosophila. Cold Spring Harb. Perspect. Biol. 2009, 1, 1–15.
[109]
Michel, T.; Reichhart, J.M.; Hoffmann, J.A.; Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 2001, 414, 756–759, doi:10.1038/414756a.
[110]
El Chamy, L.; Leclerc, V.; Caldelari, I.; Reichhart, J.-M. Sensing of “danger signals” and pathogen-associated molecular patterns defines binary signaling pathways “upstream” of Toll. Nat. Immunol. 2008, 9, 1165–1170, doi:10.1038/ni.1643.
[111]
Piao, S.; Song, Y.-L.; Kim, J.H.; Park, S.Y.; Park, J.W.; Lee, B.L.; Oh, B.-H.; Ha, N.-C. Crystal structure of a clip-domain serine protease and functional roles of the clip domains. EMBO J. 2005, 24, 4404–4414, doi:10.1038/sj.emboj.7600891.
[112]
Jang, I.-H.; Chosa, N.; Kim, S.-H.; Nam, H.-J.; Lemaitre, B.; Ochiai, M.; Kambris, Z.; Brun, S.; Hashimoto, C.; Ashida, M.; et al. A Sp?tzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 2006, 10, 45–55, doi:10.1016/j.devcel.2005.11.013.
[113]
Valanne, S.; Wang, J.-H.; R?met, M. The Drosophila Toll signaling pathway. J. Immunol. 2011, 186, 649–656, doi:10.4049/jimmunol.1002302.
[114]
Jiang, H.; Vilcinskas, A.; Kanost, M.R. Immunity in lepidopteran insects. In Invertebrate Immunity; S?derh?ll, K., Ed.; Springer: New York, NY, USA, 2010; pp. 181–204.
[115]
Ao, J.; Ling, E.; Yu, X.-Q. A Toll receptor from Manduca sexta is in response to Escherichia coli infection. Mol. Immunol. 2008, 45, 543–552, doi:10.1016/j.molimm.2007.05.019.
[116]
An, C.; Jiang, H.; Kanost, M.R. Proteolytic activation and function of the cytokine Sp?tzle in the innate immune response of a lepidopteran insect, Manduca sexta. FEBS J. 2010, 277, 148–162, doi:10.1111/j.1742-4658.2009.07465.x.
[117]
Wang, Y.; Cheng, T.; Rayaprolu, S.; Zou, Z.; Xia, Q.; Xiang, Z.; Jiang, H. Proteolytic activation of pro-Sp?tzle is required for the induced transcription of antimicrobial peptide genes in lepidopteran insects. Dev. Comp. Immunol. 2007, 31, 1002–1012, doi:10.1016/j.dci.2007.01.001.
[118]
Zhong, X.; Xu, X.-X.; Yi, H.-Y.; Lin, C.; Yu, X.-Q. A Toll-Sp?tzle pathway in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 2012, 42, 514–524, doi:10.1016/j.ibmb.2012.03.009.
[119]
An, C.; Ishibashi, J.; Ragan, E.J.; Jiang, H.; Kanost, M.R. Functions of Manduca sexta hemolymph proteinases HP6 and HP8 in two innate immune pathways. J. Biol. Chem. 2009, 284, 19716–19726.
[120]
Gertz, E.M.; Yu, Y.-K.; Agarwala, R.; Sch?ffer, A.A.; Altschul, S.F. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biol. 2006, 4, 41–54, doi:10.1186/1741-7007-4-41.
[121]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; S?ding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 1–6.
[122]
Goujon, M.; McWilliam, H.; Li, W.; Valentin, F.; Squizzato, S.; Paern, J.; Lopez, R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38, 695–699, doi:10.1093/nar/gkp1003.
Gilbert, D. Phylodendron version 0.8d beta. Available online: http://iubio.bio.indiana.edu/treeapp/ (accessed on 26 May 2013).
[125]
Choe, K.-M.; Lee, H.; Anderson, K.V. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 1122–1126, doi:10.1073/pnas.0404952102.
[126]
Schmidt, R.L.; Trejo, T.R.; Plummer, T.B.; Platt, J.L.; Tang, A.H. Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila. FASEB J. 2008, 22, 918–929.
[127]
Kaneko, T.; Yano, T.; Aggarwal, K.; Lim, J.-H.; Ueda, K.; Oshima, Y.; Peach, C.; Erturk-Hasdemir, D.; Goldman, W.E.; Oh, B.-H.; et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol. 2006, 7, 715–723.
[128]
Takehana, A.; Yano, T.; Mita, S.; Kotani, A.; Oshima, Y.; Kurata, S. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 2004, 23, 4690–4700, doi:10.1038/sj.emboj.7600466.
[129]
Leulier, F.; Vidal, S.; Saigo, K.; Ueda, R.; Lemaitre, B. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol. 2002, 12, 996–1000, doi:10.1016/S0960-9822(02)00873-4.
[130]
Leulier, F.; Rodriguez, A.; Khush, R.S.; Abrams, J.M.; Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 2000, 1, 353–358, doi:10.1093/embo-reports/kvd073.
[131]
Valanne, S.; Kallio, J.; Kleino, A.; R?met, M. Large-scale RNAi screens add both clarity and complexity to Drosophila NF-κB signaling. Dev. Comp. Immunol. 2012, 37, 9–18, doi:10.1016/j.dci.2011.09.001.
[132]
Kleino, A.; Valanne, S.; Ulvila, J.; Kallio, J.; Myllym?ki, H.; Enwald, H.; St?ven, S.; Poidevin, M.; Ueda, R.; Hultmark, D.; et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 2005, 24, 3423–3434, doi:10.1038/sj.emboj.7600807.
[133]
Zhuang, Z.-H.; Sun, L.; Kong, L.; Hu, J.-H.; Yu, M.-C.; Reinach, P.; Zang, J.-W.; Ge, B.-X. Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB. Cell. Signal. 2006, 18, 964–970, doi:10.1016/j.cellsig.2005.08.020.
[134]
Gesellchen, V.; Kuttenkeuler, D.; Steckel, M.; Pelte, N.; Boutros, M. An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO Rep. 2005, 6, 979–984, doi:10.1038/sj.embor.7400530.
[135]
Valanne, S.; Kleino, A.; Myllym?ki, H.; Vuoristo, J.; R?met, M. Iap2 is required for a sustained response in the Drosophila Imd pathway. Dev. Comp. Immunol. 2007, 31, 991–1001, doi:10.1016/j.dci.2007.01.004.
[136]
Kleino, A.; Myllym?ki, H.; Kallio, J.; Vanha-aho, L.-M.; Oksanen, K.; Ulvila, J.; Hultmark, D.; Valanne, S.; R?met, M. Pirk is a negative regulator of the Drosophila Imd pathway. J. Immunol. 2008, 180, 5413–5422.
[137]
Cheng, T.-C.; Zhang, Y.-L.; Liu, C.; Xu, P.-Z.; Gao, Z.-H.; Xia, Q.-Y.; Xiang, Z.-H. Identification and analysis of Toll-related genes in the domesticated silkworm, Bombyx mori. Dev. Comp. Immunol. 2008, 32, 464–475, doi:10.1016/j.dci.2007.03.010.
[138]
Park, J.-A.; Kim, Y. Eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway in response to fungal infection. J. Invertebr. Pathol. 2012, 110, 382–388, doi:10.1016/j.jip.2012.04.015.
[139]
Johnson, J.A.; Bitra, K.; Zhang, S.; Wang, L.; Lynn, D.E.; Strand, M.R. The UGA-CiE1 cell line from Chrysodeixis includens exhibits characteristics of granulocytes and is permissive to infection by two viruses. Insect Biochem. Mol. Biol. 2010, 40, 394–404, doi:10.1016/j.ibmb.2010.03.005.