全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

Honey Bees Inspired Optimization Method: The Bees Algorithm

DOI: 10.3390/insects4040646

Keywords: honey bee, foraging behavior, waggle dance, bees algorithm, swarm intelligence, swarm-based optimization, adaptive neighborhood search, site abandonment, random search

Full-Text   Cite this paper   Add to My Lib

Abstract:

Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

References

[1]  Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford University Press: New York, NY, USA, 1999.
[2]  Koc, E. The Bees Algorithm Theory, Improvements and Applications. Ph.D Thesis, Cardiff University, Cardiff, UK, 2010.
[3]  Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press on Demand: New York, NY, USA, 1996.
[4]  Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
[5]  Tsai, P.-W.; Pan, J.-S.; Liao, B.-Y.; Chu, S.-C. Enhanced artificial bee colony optimization. Int. J. Innovative Comput. Inf. Control 2009, 5, 5081–5092.
[6]  Tsai, P.-W.; Khan, M.K.; Pan, J.-S.; Liao, B.-Y. Interactive artificial bee colony supported passive continuous authentication system. IEEE Syst. J. 2012, doi:10.1109/JSYST.2012.2208153.
[7]  Dorigo, M.; Di Caro, G. Ant Colony Optimization: A New Meta-Heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999.
[8]  Pham, D.T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm, Technical Note; Manufacturing Engineering Center, Cardiff University: Cardiff, UK, 2005.
[9]  Pham, D.T.; Ghanbarzadeh, A. Multi-Objective Optimisation Using the Bees Algorithm. In Proceedings of the IPROMS 2007 Conference, Cardiff, UK, 2–13 July 2007.
[10]  Pham, D.T.; Soroka, A.J.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Packianather, M. Optimising Neural Networks for Identification of Wood Defects Using the Bees Algorithm. In Proceedings of the 2006 IEEE International Conference on Industrial Informatics, Singapore, 16–18 August, 2006; pp. 1346–1351.
[11]  Pham, D.T.; Afify, A.A.; Koc, E. Manufacturing Cell Formation Using the Bees Algorithm. In Proceedings of the Innovative Production Machines and Systems Virtual Conference, Cardiff, UK, 2–13 July 2007.
[12]  Pham, D.T.; Koc, E.; Lee, J.Y.; Phrueksanant, J. Using the Bees Algorithm to Schedule Jobs for a Machine. In Proceedings of the 8th International Conference on Laser MetrologyCMM and Machine Tool Performance, Cardiff, UK, 2–13 July 2007; pp. 430–439.
[13]  Pham, D.T.; Otri, S.; Afify, A.; Mahmuddin, M.; Al-Jabbouli, H. Data Clustering Using the Bees Algorithm. In Proceedings of the 40th CIRP International Manufacturing Systems Seminar, Liverpool, UK, 30 May–1 June 2007.
[14]  Pham, D.T.; Soroka, A.J.; Koc, E.; Ghanbarzadeh, A.; Otri, S. Some Applications of the Bees Algorithm in Engineering Design and Manufacture. In Proceedings of International Conference On Manufacturing Automation (ICMA 2007), Singapore, 28–30 May 2007.
[15]  Yuce, B. Novel Computational Technique for Determining Depth Using the Bees Algorithm and Blind Image Deconvolution. Ph.D Thesis, Cardiff University, Cardiff, UK, 2012.
[16]  Mastrocinque, E.; Yuce, B.; Lambiase, A.; Packianather, M.S. A Multi-Objective Optimisation for Supply Chain Network Using the Bees Algorithm. Int. J. Eng. Bus. Manage. 2013, 5, 1–11.
[17]  Fogel, D.B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd ed. ed.; IEEE Press: New York, NY, USA, 2000.
[18]  Li, L.; Liu, F. Group Search Optimisation for Application in Structural Design; Springer: Berlin, Germany, 2011.
[19]  Kennedy, J.; Ebernhart, R. Swarm Intelligence; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2001.
[20]  Panigrahi, B.K.; Lim, M.H.; Shi, Y. Handbook of Swarm Intelligence-Concepts, Principles and Applications; Springer: Berlin, Germany, 2011.
[21]  Sumathi, S.; Surekha, P. Computational Intelligence Paradigms Theory and Applications Using MATLAB; CRC Press: Boca Raton, FL, USA, 2010.
[22]  Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 1996, 26, 29–41, doi:10.1109/3477.484436.
[23]  Haddad, O.B.; Afshar, A.; Marino, M.A. Honey-Bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization. Water Resour. Manage. 2006, 20, 661–680, doi:10.1007/s11269-005-9001-3.
[24]  Yang, C.; Chen, J.; Tu, X. Algorithm of Fast Marriage in Honey Bees Optimization and Convergence Analysis. In Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2007, Jinan, China, 18–21 August 2007; pp. 1794–1799.
[25]  Curkovic, P.; Jerbic, B. Honey-bees optimization algorithm applied to path planning problem. Int. J. Simul. Model. 2007, 6, 154–164, doi:10.2507/IJSIMM06(3)2.087.
[26]  Sato, T.; Hagiwara, M. Bee System: Finding Solution by a Concentrated Search. In Proceedings of the 1997 IEEE International Conference on Systems, Man and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 3954–3959.
[27]  Teodorovi?, D.; Dell’Orco, M. Bee Colony Optimization—A Cooperative Learning Approach to Complex Transportation Problems. In Proceedings of the 10th EWGT Meeting and 16th Mini-EURO Conference, Poznan, Poland, 2005; pp. 51–60.
[28]  Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report for Erciyes University: Kayseri, Turkey, 2005.
[29]  Karaboga, D.; Basturk, B.A. Powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471, doi:10.1007/s10898-007-9149-x.
[30]  Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. J. 2008, 8, 687–697, doi:10.1016/j.asoc.2007.05.007.
[31]  Seeley, T.D. The Wisdom of Hive: The Social Physiology of Honey Bee Colonies; Harvard University Press: Cambridge, MA, USA, 2009.
[32]  Gould, J.L.; Gould, C.G. The Honey Bee; Scientific American Library: New York, NY, USA, 1988.
[33]  Von Frisch, K. Bees: Their Vision, Chemical Senses, and Language; Cornell University Press: Ithaca, NY, USA, 1950.
[34]  Huang, Z. Behavioral Communications: The Waggle Dance. Available online: http://photo.bees.net/biology/ch6/dance2.html (accessed on 29 June 2013).
[35]  Talbi, E.-G. Metaheuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009.
[36]  Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. Evol. Comput. IEEE 1997, 1, 67–82, doi:10.1109/4235.585893.
[37]  Beheshti, Z.; Shamsudding, S.M.H. A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 2013, 5, 1–35.
[38]  Pham, D.T.; Castellani, M. The bees algorithm: Modelling foraging behaviour to solve continuous optimization problems. Sage J. 2009, 223, 2919–2938.
[39]  Ahmad, S. A Study of Search Neighbourhood in the Bees Algorithm. Ph.D Thesis, Cardiff University, Cardiff, UK, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133