全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Insects  2013 

Grooming Behavior as a Mechanism of Insect Disease Defense

DOI: 10.3390/insects4040609

Keywords: grooming behavior, neural circuit, disease resistance, entomopathogen

Full-Text   Cite this paper   Add to My Lib

Abstract:

Grooming is a well-recognized, multipurpose, behavior in arthropods and vertebrates. In this paper, we review the literature to highlight the physical function, neurophysiological mechanisms, and role that grooming plays in insect defense against pathogenic infection. The intricate relationships between the physical, neurological and immunological mechanisms of grooming are discussed to illustrate the importance of this behavior when examining the ecology of insect-pathogen interactions.

References

[1]  Mooring, M.S.; Blumstein, D.T.; Stoner, C.J. The evolution of parasite-defence grooming in ungulates. Biol. J. Linn. Soc. 2004, 81, 17–37, doi:10.1111/j.1095-8312.2004.00273.x.
[2]  Sachs, B.D. The development of grooming and its expression in adult animals. Ann. N. Y. Acad. Sci. 1988, 525, 1–17, doi:10.1111/j.1749-6632.1988.tb38591.x.
[3]  Borchelt, P.L. Care of the Body Surface (COBS). In Comparative Psychology: An Evolutionary Analysis of Animal Behavior; Denny, M.R., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1980; pp. 363–384.
[4]  Kalueff, A.V.; Tuohimaa, P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res. Prot. 2004, 13, 151–158, doi:10.1016/j.brainresprot.2004.04.002.
[5]  Szebenyi, A.L. Cleaning behaviour in Drosophila melanogaster. Anim. Behav. 1969, 17, 641–651, doi:10.1016/S0003-3472(69)80006-0.
[6]  Valentine, B.D. Grooming behavior in Coleoptera. Coleopts. Bull. 1973, 27, 63–73.
[7]  Goldman, L.J.; Callahan, P.S.; Carlysle, T.C. Tibial combs and proboscis cleaning in mosquitoes. Annu. Rev. Entomol. Soc. Am. 1972, 65, 1299–1302.
[8]  Newland, P.L. Avoidance reflexes mediated by contact chemoreceptors on the legs of locusts. J. Comp. Physiol. A 1998, 183, 313–324, doi:10.1007/s003590050258.
[9]  Newland, P.L.; Rogers, S.M.; Gaaboub, I.; Matheson, T. Parallel somatotopic maps of gustatory and mechanosensory neurons in the central nervous system of an insect. J. Comp. Neurol. 2000, 425, 82–96, doi:10.1002/1096-9861(20000911)425:1<82::AID-CNE8>3.0.CO;2-5.
[10]  Rogers, S.M.; Newland, P.L. Local movements evoked by chemical stimulation of the hind leg in the locust Schistocerca gregaria. J. Exp. Biol. 2000, 203, 423–433.
[11]  Dürr, V.; Matheson, T. Graded limb targeting in an insect is caused by the shift of a single movement pattern. J. Neurophysiol. 2003, 90, 1754–1765, doi:10.1152/jn.00416.2003.
[12]  Page, K.L.; Matheson, T. Wing hair sensilla underlying aimed hindleg scratching of the locust. J. Exp. Biol. 2004, 207, 2691–2703, doi:10.1242/jeb.01096.
[13]  Hlavac, T.F. Grooming systems of insects: Structure, mechanics. Ann. Entomol. Soc. Am. 1975, 68, 823–826.
[14]  Sch?nitzer, K.; Renner, M. The function of the antenna cleaner of the honeybee (Apis mellifica). Apidologie 1984, 15, 23–32, doi:10.1051/apido:19840103.
[15]  Walker, E.D.; Archer, W.E. Sequential organization of grooming behaviors of the mosquito Aedes triseriatus. J. Insect Behav. 1988, 1, 97–109, doi:10.1007/BF01052506.
[16]  Basibuyuk, H.H.; Quicke, D.L.J. Morphology of the antenna cleaner in the Hymenoptera with particular reference to non-aculeate families (Insecta). Zool. Scr. 1995, 28, 152–177.
[17]  Basibuyuk, H.H.; Qjuicke, D.L.J. Grooming behaviours in the Hymenoptera (Insecta): Potential phylogenetic significance. Zool. J. Linn. Soc. 1999, 125, 349–382, doi:10.1111/j.1096-3642.1999.tb00597.x.
[18]  Hosoda, N.; Gorb, S.N. Friction force reduction triggers feet grooming behavior in beetles. Proc. R. Soc. B 2011, 278, 1748–1752, doi:10.1098/rspb.2010.1772.
[19]  Farish, D.J. The evolutionary implications of qualitative variation in the grooming behavior of the Hymenoptera (Insecta). Anim. Behav. 1972, 20, 662–676, doi:10.1016/S0003-3472(72)80139-8.
[20]  Thelen, E.; Farish, D.J. Analysis of grooming behaviour of wild and mutant strains of Brucon hebefor (Braconidae-Hymenoptera). Behaviour 1977, 62, 70–102, doi:10.1163/156853977X00054.
[21]  Valentine, B.D.; Glorioso, M.J. Grooming behavior in Diplura (Insecta: Apterygota). Psyche 1978, 85, 191–200, doi:10.1155/1978/46347.
[22]  Lefebvre, L. Grooming in crickets: Timing and hierarchical organization. Anim. Behav. 1981, 29, 973–984, doi:10.1016/S0003-3472(81)80050-4.
[23]  Smolinsky, A.N.; Bergner, C.L.; LaPorte, J.L.; Kalueff, A.V. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. Neuromethods 2009, 42, 21–36, doi:10.1007/978-1-60761-303-9_2.
[24]  Roy, H.E.; Steinkraus, D.C.; Eilenberg, J.; Hajek, A.E.; Pell, J.K. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 2006, 51, 331–357, doi:10.1146/annurev.ento.51.110104.150941.
[25]  Valentine, B.D. Mutual grooming in cucujoid beetles (Coleoptera: Silvanidae). Insecta Mundi. 2007. Paper 54. Available online: http://digitalcommons.unl.edu/insectamundi/54/ (accessed on 8 April 2013).
[26]  Hefetz, A.; Soroker, V.; Dahbi, A.; Malherbe, M.C.; Fresneau, D. The front basitarsal brush in Pachycondyla apicalis and its role in hydrocarbon circulation. Chemoecology 2001, 11, 17–24, doi:10.1007/PL00001827.
[27]  Root-Bernstein, M. Displacement activities during the honeybee transition from waggle dance to foraging. Anim. Behav. 2010, 79, 935–938, doi:10.1016/j.anbehav.2010.01.010.
[28]  Kovac, D.; Maschwitz, U. Secretion-Grooming in aquatic beetles (Hydradephaga): A chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1990, 1, 131–138, doi:10.1007/BF01241654.
[29]  Yanagawa, A.; Shimizu, S. Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 2007, 52, 75–85, doi:10.1007/s10526-006-9020-x.
[30]  Lusebrink, I.; Dettner, K.; Seifert, K. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 2008, 95, 751–755, doi:10.1007/s00114-008-0374-z.
[31]  Peng, Y.S.; Fang, Y.; Xu, S.; Ge, L.; Nasr, M.E. The resistance mechanism of the Asian honey bee, Apis cerana Fabr, to an ectoparasitic mite Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 1987, 49, 54–60, doi:10.1016/0022-2011(87)90125-X.
[32]  Vincent, C.M.; Bertram, S.M. Crickets groom to avoid lethal parasitoids. Anim. Behav. 2010, 79, 51–56, doi:10.1016/j.anbehav.2009.10.001.
[33]  Elder, W.H. The oil gland of birds. Wilson Bull. 1954, 66, 6–31.
[34]  Jacob, J.; Ziswiler, V. The uropygial gland. J. Avian Biol. 1982, 6, 199–324.
[35]  Moyer, B.; Rock, A.N.; Clayton, D.H. Experimental test of the importance of preen oil in rock doves (Columba livia). Auk 2003, 120, 490–496, doi:10.1642/0004-8038(2003)120[0490:ETOTIO]2.0.CO;2.
[36]  Graystock, P.; Hughes, W.O.H. Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands. Behav. Ecol. Sociobiol. 2011, 65, 2319–2327, doi:10.1007/s00265-011-1242-y.
[37]  Baracchi, D.; Mazza, G.; Turillazzi, S. From individual to collective immunity: The role of the venom as antimicrobial agent in the Stenogastrinae wasp societies. J. Insect Physiol. 2012, 58, 188–193, doi:10.1016/j.jinsphys.2011.11.007.
[38]  Gratwick, M. The contamination of insects of different species exposed to dust deposits. Bull. Entomol. Res. 1957, 48, 741–753, doi:10.1017/S0007485300002868.
[39]  Reingold, S.C.; Camhi, J.M. Abdominal grooming in the cockroach: Development of an adult behavior. J. Insect Physiol. 1978, 24, 101–110, doi:10.1016/0022-1910(78)90018-5.
[40]  Vandervorst, P.; Ghysen, A. Genetic control of sensory connections in Drosophila. Nature 1980, 86, 65–67, doi:10.1038/286065a0.
[41]  El-Awami, I.O.; Dent, D.R. The interaction of surface and dust particle size on the pick-up and grooming behaviour of the German cockroach Blattella germanica. Entomol. Exp. Appl. 1995, 77, 81–87, doi:10.1111/j.1570-7458.1995.tb01988.x.
[42]  Matheson, T. Hindleg targeting during scratching in the locust. J. Exp. Biol. 1997, 200, 93–100.
[43]  Hay, D.A. Genetical and maternal determinants of the activity and preening behaviour of Drosophila melanogaster reared in different environments. Heredity 1972, 28, 311–336, doi:10.1038/hdy.1972.43.
[44]  Ashton, K.; Wagoner, A.P.; Carrillo, R.; Gibson, G. Quantitative trait loci for the monoamine-related traits heart rate and headless behavior in Drosophila melanogaster. Genetics 2001, 157, 283–294.
[45]  Spruijt, B.; van Hooff, J.; Gispen, W. Ethology and neurobiology of grooming behavior. Physiol. Rev. 1992, 72, 825–852.
[46]  Eaton, R.C.; Farley, R.D. The neural control of cercal grooming behaviour in the cockroach, Periplaneta americana. J. Insect Physiol. 1969, 15, 1047–1065, doi:10.1016/0022-1910(69)90143-7.
[47]  Berkowitz, A.; Laurent, G. Local Control of Leg Movements and motor patterns during grooming in locusts. J. Neurosci. 1996, 16, 8067–8078.
[48]  Canal, I.; Acebes, A.; Ferrus, A. Single neuron mosaics of the Drosophila gigas mutant project beyond normal targets and modify behavior. J. Neurosci. 1998, 18, 999–1008.
[49]  Stamp, N.E. Interactions of parasitoids and checkerspot caterpillars Euphydryas spp. (Nymphalidae). J. Res. Lepid. 1984, 23, 2–18.
[50]  Hays, D.B.; Vinson, S.B. Acceptance of Heliothis virescens (F.) as a host by the parasite Cardiochiles nigriceps viereck (Hymenoptera, Braconidae). Anim. Behav. 1971, 19, 3–52.
[51]  Gross, P. Insect behavioral and morphological defenses against parasitoids. Annu. Rev. Entomol. 1993, 38, 251–273, doi:10.1146/annurev.en.38.010193.001343.
[52]  Henderson, A.E.; Hallett, R.H.; Soroka, J.J. Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J. Insect Behav. 2004, 17, 17–39, doi:10.1023/B:JOIR.0000025130.20327.1a.
[53]  Qiu, Y.; van Loon, J.J.A.; Roessingh, P. Chemoreception of oviposition inhibiting terpenoids in the diamondback moth Plutella xylostella. Entomol. Exp. Appl. 1998, 87, 143–155.
[54]  Yang, C.-H.; Belawat, P.; Hafen, E.; Jan, L.Y.; Jan, Y.-N. Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 2008, 319, 1679–1683, doi:10.1126/science.1151842.
[55]  Wuellner, C.T.; Porter, S.D.; Gilbert, L.E. Eclosion, mating, and grooming behavior of the parasitoid fly Pseudacteon curvatus (Diptera: Phoridae). Fla. Entomol. 2002, 85, 563–566, doi:10.1653/0015-4040(2002)085[0563:EMAGBO]2.0.CO;2.
[56]  B?r?czky, K.; Wada-Katsumata, A.; Batchelor, D.; Zhukovskaya, M.; Schal, C. Insects groom their antennae to enhance olfactory acuity. Proc. Natl. Acad. Sci. USA 2013, 110, 3615–3620, doi:10.1073/pnas.1212466110.
[57]  Jacquet, M.; Lebon, C.; Lemperiere, G.; Boyer, S. Behavioural functions of grooming in male Aedes albopictus (Diptera: Culicidae), the Asian tiger mosquito. Appl. Entomol. Zool. 2012, 47, 359–363, doi:10.1007/s13355-012-0126-6.
[58]  Bozic, J.; Valentincic, T. Quantitative analysis of social grooming behavior of the honey bee Apis mellifera carnica. Apidologie 1995, 26, 141–147, doi:10.1051/apido:19950207.
[59]  Robinson, W.H. Antennal Grooming and Movement Behavior in the German Cockroach, Blattella germanica (L.). In Proceedings of the Second International Conference on Urban Pests, Edinburgh, UK, July 1996; pp. 361–369.
[60]  Phillis, R.W.; Bramlage, A.T.; Wotus, C.; Whittaker, A.; Gramates, L.S.; Seppala, D.; Farahanchi, F.; Caruccio, P.; Murphey, R.K. Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. Genetics 1993, 133, 581–592.
[61]  Carlin, N.F.; Holldobler, B.; Gladstein, D.S. The kin recognition system of carpenter ants (Camponotus spp.). Behav. Ecol. Sociobiol. 1986, 20, 219–227.
[62]  Ozaki, M.; Wada-Katsumata, A.; Fujikawa, K.; Iwasaki, M.; Yokohari, F.; Satoji, Y.; Nisimura, T.; Yamaoka, R. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 2005, 309, 311–314, doi:10.1126/science.1105244.
[63]  Dettner, K.; Liepert, C. Chemical mimicry and camouflage. Ann. Rev. Entomol. 1994, 39, 129–154, doi:10.1146/annurev.en.39.010194.001021.
[64]  Seid, M.A.; Brown, B.V. A new host association of Commoptera solenopsidis (Diptera: Phoridae) with the ant Pheidole dentata (Hymenoptera: Formicidae) and behavioral observations. Fla. Entomol. 2009, 92, 309–313, doi:10.1653/024.092.0215.
[65]  Rath, W. Co-Adaptation of Apis cerana Fabr and Varroa jacobsoni Oud. Apidologie 1999, 30, 97–110, doi:10.1051/apido:19990202.
[66]  Boucias, D.G.; Pendland, J.C. Principles of Insect Pathology; Kluwer Academic Publisher: Boston, MA, USA, 1998; p. 537.
[67]  Elphick, C.; Dunning, J.B.; John, B. Behaviour. In The Sibley Guide to Bird Life & Behaviour; Elphick, C., Dunning, J.B., Sibley, D., Eds.; Christopher Helm: London, UK, 2001; pp. 58–59.
[68]  Honegger, H.-W.; Reif, H.; Müller, W. Sensory mechanisms of eye cleaning behavior in the cricket Gryllus campestris. J. Comp. Physiol. 1979, 129, 247–256, doi:10.1007/BF00657661.
[69]  Fujimura, K.; Yokohari, F.; Tateda, H. Classification of antennal olfactory receptors of the cockroach, Periplaneta americana L. Zool. Sci. 1991, 8, 243–255.
[70]  Zhukovskaya, M.I. Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L. Chem. Senses 2012, 37, 421–429, doi:10.1093/chemse/bjr121.
[71]  Tinbergen, N. The Study of Instinct; Clarendon: Oxford, UK, 1951; p. 228.
[72]  Wilz, K.J. The disinhibition interpretation of the “displacement” activities during courtship in the three-spined stickleback, Gasterosteus aculeatus. Anim. Behav. 1970, 18, 682–687, doi:10.1016/0003-3472(70)90012-6.
[73]  Anselme, P. Abnormal patterns of displacement activities: A review and reinterpretation. Behav. Process. 2008, 79, 48–58, doi:10.1016/j.beproc.2008.05.001.
[74]  File, S.E.; Mabbutt, P.S.; Walker, J.H. Comparison of adaptive responses in familiar and novel environments: Odulatory factors. Ann. N. Y. Acad. Sci. 1988, 525, 69–79, doi:10.1111/j.1749-6632.1988.tb38596.x.
[75]  David, J.P.; Boyer, S.; Mesneau, A.; Ball, A.; Ranson, H.; Dauphin-Villemant, C. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochem. Mol. Biol. 2006, 36, 410–420, doi:10.1016/j.ibmb.2006.02.004.
[76]  King-Jones, K.; Horner, M.A.; Lam, G.; Thummel, C.S. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab. 2006, 4, 37–48, doi:10.1016/j.cmet.2006.06.006.
[77]  Davenport, A.; Evans, P.D. Stress-Induced changes in the octopamine levels of insect haemo-lymph. Insect Biochem. 1984, 14, 135–143, doi:10.1016/0020-1790(84)90021-0.
[78]  Woodring, J.P.; Meier, O.W.; Rose, R. Effect of development, photoperiod, and stress on octopamine levels in the house cricket, Acheta domesticus. J. Insect Physiol. 1988, 34, 759–765, doi:10.1016/0022-1910(88)90149-7.
[79]  Hirashima, A.; Nagano, T.; Takeya, R.; Eto, M. Effect of larval density on whole-body biogenic amine levels of Tribolium freemani Hinton. Comp. Biochem. Physiol. 1993, 106, 457–461.
[80]  Libersat, F.; Pflueger, H.J. Monoamines and the orchestration of behavior. BioScience 2004, 54, 17–25, doi:10.1641/0006-3568(2004)054[0017:MATOOB]2.0.CO;2.
[81]  Cox, R.L.; Wilson, W.T. Effects of permethrin on the behavior of individually tagged honey bees, Apis mellifera L. (Hymenoptera, Apidae). Environ. Entomol. 1984, 13, 375–378.
[82]  Wiles, J.A.; Jepson, P.C. Sub-Lethal effects of deltamethrin residues on the within-crop behaviour and distribution of Coccinella septempunctata Entomol. Exp. Appl. 1994, 72, 33–45, doi:10.1111/j.1570-7458.1994.tb01800.x.
[83]  Longley, M.; Jepson, P.C. Effects of honeydew and insecticide residues on the distribution of foraging aphid parasitoids under glasshouse and field conditions. Entomol. Exp. Appl. 1996, 81, 189–198, doi:10.1111/j.1570-7458.1996.tb02031.x.
[84]  Boucias, D.G.; Stokes, C.; Storey, G.; Pendland, J.C. The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzensch. Nachr. Bayer 1996, 49, 103–144.
[85]  Neves, P.M.; Alves, S.B. Grooming capacity inhibition in Cornitermes cumulans (Kollar) (Isoptera: Termitidae) inoculated with entomopathogenic fungi and treated with imidacloprid. An. Soc. Entomol. Bras. 2000, 29, 537–545, doi:10.1590/S0301-80592000000300016.
[86]  James, R.R.; Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 2012, 109, 175–182, doi:10.1016/j.jip.2011.12.005.
[87]  Golenda, C.F.; Forgash, A.J. Grooming behavior in response to fenvalerate treatment in pyrethroid-resistant house flies. Entomol. Exp. Appl. 1986, 40, 169–175, doi:10.1111/j.1570-7458.1986.tb00499.x.
[88]  Koppenh?fer, A.M.; Grewal, P.S.; Kaya, H.K. Synergism of imidacloprid and entomopathogenic nematodes against white grubs: The mechanism. Entomol. Exp. Appl. 2000, 94, 283–293.
[89]  Rosengaus, R.; Traniello, J. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behav. Ecol. Sociobiol. 2001, 50, 546–556, doi:10.1007/s002650100394.
[90]  Hughes, W.O.H.; Eilenberg, J.; Boomsma, J.J. Trade-Offs in group living: Transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002, 269, 1811–1819, doi:10.1098/rspb.2002.2113.
[91]  Hensler, K. Intracellular recordings of neck muscle motoneurones during eye cleaning behaviour of the cricket. J. Exp. Biol. 1986, 120, 153–172.
[92]  Phillis, R.; Statton, D.; Caruccio, P.; Murphey, R.K. Mutations in the 8 kDa dynein light chain gene disrupt sensory axon projections in the Drosophila imaginal CNS. Development 1996, 122, 2955–2963.
[93]  Reingold, S.C.; Camhi, J.M. A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach, Periplaneta americana. J. Insect Physiol. 1977, 23, 1407–1420, doi:10.1016/0022-1910(77)90166-4.
[94]  strand, F.; Anderbrant, O.; J?nsson, P. Behaviour of male pine sawflies, Neodiprion sertifer, released downwind from pheromone sources. Entomol. Exp. Appl. 2000, 95, 119–128.
[95]  Yanagawa, A.; Yokohari, F.; Shimizu, S. The role of antennae in removing entomopathogenic fungi from cuticle of the termite, Coptotermes formosanus. J. Insect Sci. 2009, 9, 1–9, doi:10.1673/031.009.0601.
[96]  Zhukovskaya, M.I. Odorant-Dependent changes of the antennal surface secretions in the cockroach, Periplaneta americana. Sensornye. Syst. 2011, 25, 78–86. (in Russian).
[97]  Eisner, T.; Deyrup, M.; Jacobs, R.; Meinwald, J. Necrodols: Anti-Insectan terpenes from defensive secretion of carrion beetle (Necrodes surinamensis). J. Chem. Ecol. 1986, 12, 1407–1415, doi:10.1007/BF01012360.
[98]  Dethier, V.G. Sensitivity of the contact chemoreceptors of the blowfly to vapors. Proc. Nat. Acad. Sci. (Wash.) 1972, 69, 2189–2192, doi:10.1073/pnas.69.8.2189.
[99]  St?dler, E.; Hanson, F.E. Olfactory capabilities of the “gustatory” chemoreceptors of the tobacco hornworm larvae. J. Comp. Physiol. 1975, 104, 97–102, doi:10.1007/BF01379454.
[100]  Maldonado, H.; Levin, L. Distance estimation and the monocular cleaning reflex in praying mantis. Z. Vergl. Physiol. 1967, 56, 258–267, doi:10.1007/BF00333670.
[101]  Page, K.L.; Zakotnik, J.; Dürr, V.; Matheson, T. Motor control of aimed limb movements in an insect. J. Neurophysiol. 2008, 99, 484–499, doi:10.1152/jn.00922.2007.
[102]  Torres, G.; Horowitz, J.M. Activating properties of cocaine and cocaethylene in a behavioral preparation of Drosophila melanogaster. Synapse 1998, 29, 148–161, doi:10.1002/(SICI)1098-2396(199806)29:2<148::AID-SYN6>3.0.CO;2-7.
[103]  Yellman, C.; Tao, H.; He, B.; Hirsh, J. Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc. Natl. Acad. Sci. USA 1997, 94, 4131–4136, doi:10.1073/pnas.94.8.4131.
[104]  Schaefer, P.L.; Ritzmann, R.E. Descending influences on escape behavior and motor pattern in the cockroach. J. Neurobiol. 2001, 49, 9–28, doi:10.1002/neu.1062.
[105]  Corfas, G.; Dudai, Y. Habituation and dishabituation of a cleaning reflex in normal and mutant Drosophila. J. Neurosci. 1989, 9, 56–62.
[106]  Weisel-Eichler, A.; Haspel, G.; Libersat, F. Venom of a parasitoid wasp induces prolonged grooming in the cockroach. J. Exp. Biol. 1999, 202, 957–964.
[107]  Gal, R.; Rosenberg, L.A.; Libersat, F. Parasitoid wasp uses a venom cocktail injected into the brain to manipulate the behavior and metabolism of its cockroach prey. Arch. Insect Biochem. Physiol. 2005, 60, 198–208.
[108]  Zack, S. The effects of foreleg amputation on head grooming behaviour in the praying mantis, Sphodromantis lineola. J. Comp. Physiol. 1978, 125, 253–258, doi:10.1007/BF00656603.
[109]  Campbell, F.L. A new antennal sensillum of Blattella germanica (Dictyoptera: Blattellidae) and its presence in other Blattaria. Ann. Entomol. Soc. Am. 1972, 65, 888–892.
[110]  Frings, H.; Frings, M. The loci of contact chemoreceptors in insects. Am. Mid. Nat. 1949, 41, 602–658, doi:10.2307/2421776.
[111]  Mustard, J.A.; Pham, P.M.; Smith, B.H. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J. Insect Physiol. 2010, 56, 422–430, doi:10.1016/j.jinsphys.2009.11.018.
[112]  Fussnecker, B.L.; Smith, B.H.; Mustard, J.A. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J. Insect Physiol. 2006, 52, 1083–1092, doi:10.1016/j.jinsphys.2006.07.008.
[113]  Schr?der, R.; Hilker, M. The relevance of background odor in resource location by insects: A behavioral approach. BioScience 2008, 58, 308–316, doi:10.1641/B580406.
[114]  Webb, B. Cognition in insects. Phil. Trans. R. Soc. B 2012, 367, 2715–2722, doi:10.1098/rstb.2012.0218.
[115]  Teichert, H.; D?tterl, S.; Frame, D.; Kirejtshuk, A.; Gottsberger, G. A novel pollination mode, saprocantharophily, in Duguetia cadaverica (Annonaceae): A stinkhorn (Phallales) flower mimie. Flora 2012, 207, 522–529, doi:10.1016/j.flora.2012.06.013.
[116]  Bruce, T.J.A.; Pickett, J.A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 2011, 72, 1605–1611, doi:10.1016/j.phytochem.2011.04.011.
[117]  Clarkson, J.M.; Charnley, A.K. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 1996, 4, 197–203, doi:10.1016/0966-842X(96)10022-6.
[118]  Gripenberg, S.; Mayhew, P.J.; Parnell, M.; Roslin, T. A meta-analysis of preference-performance relationships in phytophagous insects. Ecol. Lett. 2010, 13, 383–393.
[119]  Cunningham, J.P. Can mechanism help explain insect host choice? J. Evol. Biol. 2012, 25, 244–251, doi:10.1111/j.1420-9101.2011.02435.x.
[120]  Floyd, M.; Evans, D.A.; Howse, P.E. Electrophysiological and behavioural studies on naturally occurring repellents to Reticultermes lucifugus. J. Insect Physiol. 1976, 22, 697–701, doi:10.1016/0022-1910(76)90235-3.
[121]  Dong, C.; Zhang, J.; Chen, W.; Huang, H.; Hu, Y. Characterization of a newly discovered China variety of Metarhizium anisopliae (M. anisopliae var. dcjhyium) for virulence to termites, isoenzyme, and phylogenic analysis. Microbiol. Res. 2007, 162, 53–61, doi:10.1016/j.micres.2006.07.001.
[122]  Sun, J.; Fuxa, J.R.; Richter, A.; Ring, D. Interactions of Metarhizium anisopliae and tree-based mulches in repellence and mycoses against Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ. Entomol. 2008, 37, 755–763, doi:10.1603/0046-225X(2008)37[755:IOMAAT]2.0.CO;2.
[123]  Carey, A.F.; Carlson, J.R. Insect olfaction from model system to disease control. Proc. Natl. Acad. Sci. USA 2011, 108, 12987–12995, doi:10.1073/pnas.1103472108.
[124]  Pinho, P.G.D.; Ribeiro, B.; Gon?alves, R.F.; Baptista, P.; Valent?o, P.; Seabra, R.M.; Andrade, P.B. Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J. Agric. Food Chem. 2008, 56, 1704–1712, doi:10.1021/jf073181y.
[125]  Mburu, D.M.; Maniania, N.K.; Hassanali, A. Comparison of volatile blends and nucleotides sequences of two Beauveria bassiana isolates of different virulence and repellency towards the termite Macrotermes michealseni. J. Chem. Ecol. 2013, 39, 101–108, doi:10.1007/s10886-012-0207-6.
[126]  Pasquinelli, A.E.; Hunter, S.; Bracht, J. MicroRNAs: A developing story. Curr. Opin. Gen. Dev. 2005, 15, 200–205, doi:10.1016/j.gde.2005.01.002.
[127]  Vreugdenhil, E.; Berezikov, E. Fine-Tuning the brain: microRNAs. Front. Neuroendocrinol. 2010, 31, 128–133, doi:10.1016/j.yfrne.2009.08.001.
[128]  Abbott, A.L. Uncovering new functions for MiroRNAs in Caenorhabditis elegans. Curr. Biol. 2011, 21, 668–671, doi:10.1016/j.cub.2011.07.027.
[129]  Pradel, E.; Zhang, Y.; Pujol, N.; Matsuyama, T.; Bargmann, C.I.; Ewbank, J.J. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2007, 104, 2295–2300.
[130]  Zhang, Y.; Lu, H.; Bargmann, C.I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 2005, 438, 179–184, doi:10.1038/nature04216.
[131]  Zhang, Y. Neuronal mechanisms of Caenorhabditis elegans and pathogenic bacteria interactions. Curr. Opin. Microbiol. 2008, 11, 257–261.
[132]  Song, B.-M.; Faumont, S.; Lackery, S.; Avery, L. Recognition of familiar food activities feeding via an endocrine serotonin signal in Caenorhabditis elegans. eLife 2013, 2, e00329, doi:10.7554/eLife.00329.
[133]  Hendricks, S.J.; Sollars, S.I.; Hill, D.L. Injury-Induced functional plasticity in the peripheral gustatory system. J. Neurosci. 2002, 22, 8607–8613.
[134]  Cross-Mellor, S.K.; Hoshooley, J.S.; Kavaliers, M.; Ossenkopp, K.P. Immune activation paired with intraoral sucrose conditions oral rejection. Neuroreport 2004, 15, 2287–2291, doi:10.1097/00001756-200410050-00029.
[135]  Cross-Mellor, S.K.; Kavaliers, M.; Ossenkopp, K.-P. Comparing immune activation (lipopolysaccharide) and toxin (lithium chloride)-induced gustatory conditioning: Lipopolysaccharide produces conditioned taste avoidance but not aversion. Behav. Brain Res. 2004, 148, 11–19, doi:10.1016/S0166-4328(03)00181-5.
[136]  Cross-Mellor, S.K.; Kavaliers, M.; Ossenkopp, K.-P. The effects of lipopolysaccharide and lithium chloride on the ingestion of a bitter-sweet taste: Comparing intake and palatability. Brain Behav. Immun. 2005, 19, 564–573, doi:10.1016/j.bbi.2005.02.001.
[137]  Pacheco-Lopez, G.; Niemi, M.-B.; Kou, W.; Harting, M.; Fandrey, J.; Schedlowski, M. Neural substrates for behaviorally conditioned immunosuppression in the rat. J. Neurosci. 2005, 25, 2330–2337.
[138]  Niemi, M.-B.; Harting, M.; Kou, W.; del Rey, A.; Besedovsky, H.O.; Schedlowski, M.; Pacheco-Lopez, G. Taste-Immunosuppression engram: Reinforcement and extinction. J. Neuroimmunol. 2007, 188, 74–79, doi:10.1016/j.jneuroim.2007.05.016.
[139]  Pacheco-Lopez, G.; Niemi, M.B.; Engler, H.; Engler, A.; Riether, C.; Doenlen, R.; Espinosa, E.; Oberbeck, R.; Schedlowski, M. Weaken taste-LPS association during endotoxin tolerance. Physiol. Behav. 2008, 93, 261–266.
[140]  Vega, F.E.; Kaya, H.K. Insect Pathology, 2nd ed. ed.; Academic Press: San Diego, CA, USA, 2012; p. 508.
[141]  Tanada, Y.; Kaya, H.K. Insect Pathology; Academic Press: San Diego, CA, USA, 1993; p. 666.
[142]  Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743, doi:10.1146/annurev.immunol.25.022106.141615.
[143]  Fouks, B.; Michae, H.; Lattorff, G. Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). PLoS One 2011, 6, e26328, doi:10.1371/journal.pone.0026328.
[144]  Swanson, J.A.I.; Torto, B.; Kells, S.A.; Mesce, K.A.; Tumlinson, J.H.; Spivak, M. Odorants that induce hygenic behaviour in honeybees: Identification of volatile compounds in chalkbrood-infected honeybee larvae. J. Chem. Ecol. 2009, 35, 1108–1116, doi:10.1007/s10886-009-9683-8.
[145]  Ugelvig, L.V.; Kronauer, D.J.C.; Schrempf, A.; Heinze, J.; Cremer, S. Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc. R. Soc. B 2010, 277, 2821–2828, doi:10.1098/rspb.2010.0644.
[146]  Scharf, I.; Modlmeier, A.P.; Beros, S.; Foitzik, S. Ant societies buffer individual-level effects of parasite infections. Am. Nat. 2012, 180, 671–683, doi:10.1086/667894.
[147]  Tragust, S.; Mitteregger, B.; Barone, V.; Konrad, M.; Ugelvig, L.V.; Cremer, S. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr. Biol. 2013, 23, 76–82, doi:10.1016/j.cub.2012.11.034.
[148]  Nielsen, C.; Anurag, A.; Agrawal, A.A.; Hajek, A.E. Ants defend aphids against lethal disease. Biol. Lett. 2010, 23, 205–208.
[149]  Schoonhoven, L.M.; van Loon, J.J.A. An inventory of taste in caterpillars: Each species its own key. Acta Zool. Acad. Sci. Hung. 2002, 48, 215–263.
[150]  Chapman, R.F. Contact chemoreception in feeding by phytophagous insects. Annu. Rev. Entomol. 2003, 48, 455–484, doi:10.1146/annurev.ento.48.091801.112629.
[151]  Dahanukar, A.; Hallem, E.A.; Carlson, J.R. Insect chemoreception. Curr. Opin. Neurobiol. 2005, 15, 423–430, doi:10.1016/j.conb.2005.06.001.
[152]  Hallem, E.A.; Dahanukar, A.; Carlson, J.R. Insect odor and taste receptors. Annu. Rev. Entomol. 2006, 51, 113–135, doi:10.1146/annurev.ento.51.051705.113646.
[153]  Clark, A.G.; Eisen, M.B.; Smith, D.R.; Bergman, C.M.; Oliver, B.; Markow, T.A.; Kaufman, T.C.; Kellis, M.; Gelbart, W.; Iyer, V.N.; et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007, 450, 203–218, doi:10.1038/nature06341.
[154]  McBride, C.S. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl. Acad. Sci. USA 2007, 104, 4996–5001, doi:10.1073/pnas.0608424104.
[155]  McBride, C.S.; Arguello, J.R. Five drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 2007, 177, 1395–1416, doi:10.1534/genetics.107.078683.
[156]  Steiner, S.; Erdmann, D.; Steidle, J.; Ruther, J. Host habitat assessment by a parasitoid using fungal volatiles. Front. Zool. 2007, 4, 3, doi:10.1186/1742-9994-4-3.
[157]  De Bruyne, M.; Baker, T. Odor detection in insects: Volatile codes. J. Chem. Ecol. 2008, 34, 882–897, doi:10.1007/s10886-008-9485-4.
[158]  Bartholomay, L.C.; Cho, W.L.; Rocheleau, T.A.; Boyle, J.P.; Beck, E.T.; Fuchs, J.F.; Liss, P.; Rusch, M.; Butler, K.M.; Wu, R.C.C.; et al. escription of the transcriptomes of immune response-activated Hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect. Immun. 2004, 72, 4114–4126, doi:10.1128/IAI.72.7.4114-4126.2004.
[159]  Aguilar, R.; Jedlicka, A.E.; Mintz, M.; Mahairaki, V.; Scott, A.L.; Dimopoulos, G. Global gene expression analysis of Anopheles gambiae responses to microbial challenge. Insect Biochem. Mol. Biol. 2005, 35, 709–719, doi:10.1016/j.ibmb.2005.02.019.
[160]  Myles, T.G. Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 2002, 40, 243–255.
[161]  Mburu, D.M.; Ochola, L.; Maniania, N.K.; Njagi, P.G.N.; Gitonga, L.M.; Ndung’u, M.W.; Wanjoya, A.K.; Hassanali, A. Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni. J. Insect Physiol. 2009, 55, 774–780, doi:10.1016/j.jinsphys.2009.04.015.
[162]  Ennis, D.E.; Dillon, A.B.; Griffin, C.T. Pine weevils modulate defensive behavior in response to parasites of different virulence. Anim. Behav. 2010, 80, 283–288, doi:10.1016/j.anbehav.2010.05.006.
[163]  Yanagawa, A.; Yokohari, F.; Shimizu, S. Influence of fungal odor on grooming behavior of the termite, Coptotermes formosanus Shiraki. J. Insect Sci. 2010, 10, 141.
[164]  Yanagawa, A.; Fujiwara-Tsujii, N.; Akino, T.; Yoshimura, T.; Yanagawa, T.; Shimizu, S. Behavioral changes in the termite, Coptotermes formosanus (Isoptera), inoculated with six fungal isolates. J. Invertebr. Pathol. 2011, 107, 100–106, doi:10.1016/j.jip.2011.03.003.
[165]  Yanagawa, A.; Fujiwara-Tsujii, N.; Akino, T.; Yoshimura, T.; Yanagawa, T.; Shimizu, S. Musty odor of entomopathogens enhances disease-prevention behaviors in the termite Coptotermes formosanus. J. Invertebr. Pathol. 2011, 108, 1–6.
[166]  Hesketh, H.; Roy, H.E.; Eilenberg, J.; Pell, J.K.; Hails, R.S. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl 2010, 55, 55–73, doi:10.1007/s10526-009-9249-2.
[167]  Jackson, M.A.; Dunlop, C.A.; Jaronski, A.T. Ecological considerations in producing and formulating fungal entomopathogen for use in insect biocontrol. BioControl 2010, 55, 129–145, doi:10.1007/s10526-009-9240-y.
[168]  Gendrin, M.; Welchman, D.P.; Poidevin, M.; Herve, M.; Lemaitre, B. Long-Range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog. 2009, 5, e1000694, doi:10.1371/journal.ppat.1000694.
[169]  Bulmer, M.S.; Bachelet, I.; Raman, R.; Rosengaus, R.B.; Sasisekharan, R. Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc. Natl. Acad. Sci. USA 2009, 106, 12652–12657.
[170]  Hauton, C.; Smith, V.J. Adaptive immunity in invertebrates: A straw house without a mechanistic foundation. BioEssays 2007, 29, 1138–1146, doi:10.1002/bies.20650.
[171]  Chou, P.-H.; Chang, H.-S.; Chen, I.-T.; Lin, H.-Y.; Chen, Y.-M.; Yang, H.-L.; Wang, K.C.H.-C. The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Dev. Comp. Immunol. 2009, 33, 1258–1267, doi:10.1016/j.dci.2009.07.006.
[172]  Arala-Chaves, M.; Sequeira, T. Is there any kind of adaptive immunity in invertebrates? Aquaculture 2000, 191, 247–258, doi:10.1016/S0044-8486(00)00430-0.
[173]  Kurtz, J.; Armitage, S.A.O. Alternative adaptive immunity in invertebrates. Trends Immunol. 2006, 27, 493–496, doi:10.1016/j.it.2006.09.001.
[174]  Walker, T.N.; Hughes, W.O.H. Adaptive social immunity in leaf-cutting ants. Biol. Lett. 2009, 5, 446–448, doi:10.1098/rsbl.2009.0107.
[175]  Yek, S.H.; Boomsma, J.J.; Schi?tt, M. Differential gene expression in Acromyrmex leaf-cutting ants after challenges with two fungal pathogens. Mol. Ecol. 2013, 22, 2173–2187, doi:10.1111/mec.12255.
[176]  Cotter, S.C.; Kilner, R.M. Personal immunity versus social immunity. Behav. Ecol. 2010, 21, 663–668, doi:10.1093/beheco/arq070.
[177]  Cremer, S.; Armitage, S.A.O.; Schmid-Hempel, P. Social immunity. Curr. Biol. 2007, 17, R693–R702, doi:10.1016/j.cub.2007.06.008.
[178]  Cremer, S.; Sixt, M. Analogies in the evolution of individual and social immunity. Phil. Trans. R. Soc. B 2009, 364, 129–142, doi:10.1098/rstb.2008.0166.
[179]  Oi, D.H.; Pereira, R.M. Ant behaviour and microbial pathogens (Hymenoptera: Formicidae). Fla. Entomol. 1993, 76, 63–75, doi:10.2307/3496014.
[180]  Yanagawa, A.; Shimizu, S. Defense strategy of the termite, Coptotermes formosanus Shiraki to entomopathogenic fungi. Jpn. J. Environ. Entomol. Zool. 2005, 16, 17–22.
[181]  Galvanho, J.P.; Carrera, M.P.; Moreira, D.O.; Erthal, M., Jr.; Silva, C.P.; Samuels, R.I. Imidacloprid inhibits behavioral defences of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J. Insect. Behav. 2013, 26, 1–13, doi:10.1007/s10905-012-9328-6.
[182]  Kramm, K.R.; West, D.F. Termite pathogens: Effects of ingested Metarhizium, Beauveria, and Gliocladium conidia on worker termite (Reticulitermes sp.). J. Invertebr. Pathol. 1982, 40, 7–11, doi:10.1016/0022-2011(82)90030-1.
[183]  Shimizu, S.; Yamaji, M. Effect of density of the termite, Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae), on the susceptibilities to Metarhizium anisoplia. Appl. Entomol. Zool. 2003, 38, 125–130, doi:10.1303/aez.2003.125.
[184]  Rohlfs, M. Clash of kingdoms or why Drosophila larvae positively respond to fungal competitors. Front. Zool. 2005, 2, doi:10.1186/1742-9994-2-2.
[185]  Aubert, A.; Richard, F.J. Social management of LPS-induced inflammation in Formica polyctena ants. Brain Behav. Immun. 2008, 22, 833–837, doi:10.1016/j.bbi.2008.01.010.
[186]  Wilson-Rich, N.; Spivak, M.; Fefferman, N.H.; Starks, P.T. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 2009, 54, 405–423, doi:10.1146/annurev.ento.53.103106.093301.
[187]  Libersat, F.; Delago, A.; Gal, R. Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol. 2009, 54, 189–207, doi:10.1146/annurev.ento.54.110807.090556.
[188]  Rohlfs, M.; Obmann, B.; Petersen, R. Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol. Entomol. 2005, 30, 556–563, doi:10.1111/j.0307-6946.2005.00722.x.
[189]  Hodson, A.K.; Friedman, M.L.; Wu, L.N.; Lewis, E.E. European earwig (Forficula auricularia) as a novel host for the entomopathogenic nematode Steinernema carpocapsae. J. Invertebr. Pathol. 2011, 107, 60–64, doi:10.1016/j.jip.2011.02.004.
[190]  Wang, Y.; Campbell, J.F.; Gaugler, R. Infection of entomopathogenic nematodes Steinernema glaseri and Heterorhabditis bacteriophora against Popillia japonica (Coleoptera: Scarabaeidae) larvae. J. Invertebr. Pathol. 1995, 66, 178–184, doi:10.1006/jipa.1995.1081.
[191]  Rieger, D.; Fraunholz, C.; Popp, J.; Bichler, D.; Dittmann, R.; Helfrich-Forster, C. The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythm. 2007, 22, 387–399, doi:10.1177/0748730407306198.
[192]  Thompson, G.J.; Crozier, Y.C.; Crozier, R.H. Isolation and characterization of a termite transferrin gene up-regulated on infection. Insect Mol. Biol. 2003, 12, 1–7, doi:10.1046/j.1365-2583.2003.00381.x.
[193]  Lemaitre, B.; Reichhart, J.M.; Hoffmann, J.A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 1997, 94, 14614–14619, doi:10.1073/pnas.94.26.14614.
[194]  Gottar, M.; Gobert, V.; Matskevich, A.A.; Reichhart, J.M.; Wang, C.S.; Buft, T.M.; BeIvin, M.; Hoffmann, J.A.; Ferrandon, D. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006, 127, 1425–1437, doi:10.1016/j.cell.2006.10.046.
[195]  Alexander, R.D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 1974, 5, 324–383.
[196]  Yoshimura, T.; Takahashi, M. Termiticidal performance of an entomogenous fungus, Beauveria brongniartii (Saccardo) Petch in laboratory tests. Jpn. J. Environ. Entomol. Zool. 1998, 9, 16–22.
[197]  Wilson, K.; Knell, R.; Boots, M.; Koch-Osborne, J. Group living and investment in immune defense: An interspecific analysis. J. Anim. Ecol. 2003, 72, 133–143, doi:10.1046/j.1365-2656.2003.00680.x.
[198]  Rosengaus, R.B.; Jordan, C.; Lefebvre, M.L.; Traniello, J.F.A. Pathogen alarm behavior in termite: A new form of communication in social insects. Naturwissenschaften 1999, 86, 544–548, doi:10.1007/s001140050672.
[199]  Ugelvig, L.V.; Cremer, S. Social prophylaxis: Group interaction promotes collective immunity in ant colonies. Curr. Biol. 2007, 17, 1967–1971, doi:10.1016/j.cub.2007.10.029.
[200]  Fefferman, N.H.; Traniello, J.F.A.; Rosengaus, R.B.; Calleri, D.V., II. Disease prevention and resistance in social insects: Modeling the survival consequences of immunity, hygienic behavior, and colony organization. Behav. Ecol. Sociobiol. 2007, 61, 565–577, doi:10.1007/s00265-006-0285-y.
[201]  Radford, A.N. Post-Allogrooming reductions in self-directed behaviour are affect by role and status in the green woodhoopoe. Biol. Lett. 2012, 8, 24–27, doi:10.1098/rsbl.2011.0559.
[202]  Rosengaus, R.B.; Maxmen, A.B.; Coates, L.E.; Traniello, J.F.A. Disease resistance: A benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav. Ecol. Sociobiol. 1998, 44, 125–134, doi:10.1007/s002650050523.
[203]  Chouvenc, T.; Su, N.-Y.; Robert, A. Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. J. Invertebr. Pathol. 2009, 101, 130–136, doi:10.1016/j.jip.2009.04.005.
[204]  Okuno, M.; Tsuji, K.; Sato, H.; Fujisaki, K. Plasticity of grooming behavior against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicas. J. Ethol. 2012, 30, 23–27, doi:10.1007/s10164-011-0285-x.
[205]  Little, A.E.F.; Murakami, T.; Mueller, U.G.; Currie, C.R. Defending against parasites: Fungus-Growing ants combine specialized behaviours and microbial symbionts to protect their fungus garden. Biol. Lett. 2006, 2, 12–16, doi:10.1098/rsbl.2005.0371.
[206]  Fernandez-Marin, H.; Zimmerman, J.; Rehner, S.; Wcislo, W. Active use of the metapleural glands by ants in controlling fungal infection. Proc. R. Soc. Lond. B 2006, 273, 1689–1695, doi:10.1098/rspb.2006.3492.
[207]  Beattie, A.J.; Turnbull, C.L.; Hough, T.; Knox, R.B. Antibiotic production—A possible function for the metapleural glands of ants (Hymenoptera, Formicidae). Ann. Entomol. Soc. Am. 1986, 79, 448–450.
[208]  Bot, A.N.M.; Obermayer, M.L.; Holldobler, B.; Boomsma, J.J. Functional morphology of the metapeural gland in the leaf-cutting ant Acromyrmex octospinosus. Insect Soc. 2001, 48, 63–66, doi:10.1007/PL00001747.
[209]  H?lldobler, B.; Wilson, E.O. The Ants; Belknap Press: Cambridge, MA, USA, 1990; p. 746.
[210]  Mackintosh, J.A.; Trimble, J.E.; Jones, M.K.; Karuso, P.H.; Beattie, A.J.; Veal, D.A. Antimicrobial mode of action of secretions from the metapleural gland of Myrmecia gulosa (Australian bull ants). Can. J. Microbiol. 1995, 41, 136–144, doi:10.1139/m95-018.
[211]  Schlüns, H.; Crozier, R.H. Molecular and chemical immune defenses in ants (Hymenoptera: Formicidae). Myrmecol. News 2009, 12, 237–249.
[212]  Veal, D.A.; Trimble, J.E.; Beattie, A.J. Antimicrobial properties of secretions from the metapleural glands of Myrmecia gulosa (The Australian bull ants). J. Appl. Bacteriol. 1992, 72, 188–194, doi:10.1111/j.1365-2672.1992.tb01822.x.
[213]  Moretto, G.; Gon?alves, L.S.; de Jong, D. Heritability Africanized and European honey bee defensive behavior against the mite Varroa jacobsoni. Braz. J. Genet. 1993, 16, 71–77.
[214]  Büchler, R. Rate of damaged mites in natural mite fall with regard to seasonal effects and infestation development. Apidologie 1993, 24, 492–493.
[215]  Büchler, R. Design and success of a German breeding program for Varroa tolerance. Am. Bee J. 2000, 140, 662–665.
[216]  Bienefeld, K.; Zautkea, F.; Proninb, D.; Mazeedc, A. Recording the proportion of damaged Varroa jacobsoni Oud. in the debris of honey bee colonies (Apis mellifera). Apidologie 1999, 30, 249–256, doi:10.1051/apido:19990401.
[217]  Hoffman, S. The occurrence of damaged mites in cage test and under field conditions in hybrids of different carniolan lines. Apidologie 1993, 24, 493–495.
[218]  Rosenkranz, P.; Fries, I.; Boecking, O.; Stürmer, M. Damaged Varroa mites in the debris of honey bee (Apis mellifera L.) colonies with and without hatching brood. Apidologie 1997, 28, 427–437, doi:10.1051/apido:19970609.
[219]  Arechavaleta-Velasco, M.E.; Guzman-Novoa, E. Relative effect of four characteristics that restrain the population growth of the mite Varroa destructor in honey bee (Apis mellifera) colonies. Apidologie 2001, 32, 157–174, doi:10.1051/apido:2001121.
[220]  Stanimirovic, Z.; Stevanovic, J.; Cirkovic, D. Behavioural defenses of the honey bee ecotype from Sjenica-Pester against Varroa destructor. Acta Vet. 2005, 55, 69–82, doi:10.2298/AVB0501069S.
[221]  Roode, J.C.; Lefévre, T. Behavioral immunity in insects. Insects 2012, 3, 789–820, doi:10.3390/insects3030789.
[222]  Clemente, C.J.; Bullock, J.M.R.; Beale, A.; Federle, W. Evidence-Self-Cleaning in fluid-based smooth and hairy adhesive systems of insects. J. Exp. Biol. 2009, 213, 635–642.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133