We performed a sequestration study of aristolactams (ALs) from Aristolochia chilensis in Battus polydamas archidamas (Lepidoptera: Papilionidae) by examining the AL content of the plant, fifth instar larvae, osmeterial secretion, pupae, exuviae and feces. Aristolactam-I (AL-I) and aristolactam-II (AL-II) present in A. chilensis are sequestered by fifth instar larvae of B. polydamas archidamas. There is a preferential sequestration of AL-II, or a more efficient metabolization and excretion of AL-I, by the larva. No ALs were found in the osmeterial secretion, pupae and exuviae; in addition, little AL-I and no AL-II were found in larval frass. The two lactams, particularly AL-I, are extensively metabolized to other products in the larva. A reasonable hypothesis is that the ingested ALs are oxidized to their respective aristolochic acids.
References
[1]
Feeny, P. Chemical constraints on the evolution of swallowtail butterflies. In Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions; Price, P.W., Lewinsohn, T.M., Fernandez, J.W., Benson, W.W., Eds.; Wiley: New York, NY, USA, 1991; pp. 315–340.
[2]
Weintraub, J.D. Host plant association patterns and phylogeny in the tribe troidini. In Swallowtail Butterflies: Their Ecology and Evolutionary Biology; Scriber, J.M., Tsubaki, Y., Lederhouse, R.C., Eds.; Scientific Publishers: Gainesville, FL, USA, 1995; pp. 307–316.
[3]
Silva-Brand?o, K.L.; Freitas, A.V.L.; Brower, A.V.Z.; Solferini, V.N. Phylogenetic relationships of the new world troidini swallowtails (lepidoptera: papilionidae) based on COI, COII, and EF-1α genes. Mol. Phylogenet. Evol.?2005, 36, 468–483, doi:10.1016/j.ympev.2005.04.007.
[4]
Pe?a, L.; Ugarte, A. Las Mariposas de Chile; Editorial Universitaria: Santiago, Chile, 1997; pp. 234–254.
[5]
Urzúa, A.; Freyer, A.J.; Shamma, M. Aristolodione, a 4,5-Dioxoaporphine from Aristolochia chilensis. J. Nat. Prod.?1987, 50, 305–306, doi:10.1021/np50050a043.
[6]
Urzúa, A.; Rojas, V. Constituents of Aristolochia chilensis. Fitoterapia?1990, LXI, 190.
[7]
Urzúa, A.; Santander, R.; Sotes, G. Aristolochic acids from Aristolochia bridgesii, a host-plant of Battus polydamas archidamas. J. Chil. Chem. Soc.?2009, 54, 437–438.
[8]
Urzúa, A.; Salgado, G.; Cassels, B.K.; Eckhardt, G. Aristolochic acids in Aristolochia chilensis and the aristolochia-feeder Battus archidamas (lepidoptera). Coll. Czech. Chem. Comm.?1983, 48, 1513–1519, doi:10.1135/cccc19831513.
[9]
Urzúa, A.; Rodríguez, R.; Cassels, B.K. Fate of ingested aristolochic acids in Battus archidamas. Biochem. Syst. Ecol.?1987, 15, 687–689, doi:10.1016/0305-1978(87)90047-0.
[10]
Kumar, V.; Poonam; Prasad, A.K.; Parmar, V.S. Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat. Prod. Rep.?2003, 20, 565–583, doi:10.1039/b303648k.
[11]
Bentley, K.W. β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep.?2006, 23, 444–463, doi:10.1039/b509523a.
[12]
Kuo, P.-C.; Li, Y.-C.; Wu, T.-S. Chemical constituents and pharmacology of the Aristolochia species. J. Tradit. Comp. Med.?2011, 2, 249–266.
Fordyce, J.A. A model without a mimic: Aristolochic acids from the California pipevine swallowtail, Battus philenor hirsuta, and its host plant, Aristolochia californica. J. Chem. Ecol.?2000, 26, 2567–2578, doi:10.1023/A:1005588829864.
[16]
Klitzke, C.F.; Brown, K.S. The occurrence of aristolochic acids in neotropical troidine swallowtails (lepidoptera: papilionidae). Chemoecology?2000, 10, 99–102, doi:10.1007/s000490050013.
[17]
Priestap, H.A.; Velandia, A.; Johnson, J.; Barbieri, M. Secondary metabolite uptake by the Aristolochia-feeding papilionoid butterfly Battus polydamas. Biochem. Syst. Ecol.?2012, 40, 126–137, doi:10.1016/j.bse.2011.10.006.
[18]
Jou, J.-H.; Li, C.-Y.; Schelonka, E.P.; Lin, C.-H.; Wu, T.-S. Analysis of the analogues of aristolochic acid and aristolactam in the plant of Aristolochia genus by HPLC. J. Food Drug Anal.?2004, 12, 40–45.
[19]
Zhang, C.; Wang, X.; Shang, M.; Yu, J.; Xu, Y.; Li, Z.; Lei, L.; Li, X.; Cai, S.; Namba, T. Simultaneous determination of five aristolochic acids and two aristololactams in Aristolochia plants by high-performance liquid chromatography. Biomed. Chromatogr.?2006, 20, 305–318.
[20]
Yuan, J.; Nie, L.; Zeng, D.; Luo, X.; Tang, F.; Ding, L.; Liu, Q.; Guo, M.; Yao, S. Simultaneous determination of nine aristolochic acid analogues in medicinal plants and preparations by high-performance liquid chromatography. Talanta?2007, 73, 644–665, doi:10.1016/j.talanta.2007.04.042.
[21]
Yuan, J.; Liu, Q.; Zhub, W.; Ding, L.; Tang, F.; Yao, S. Simultaneous analysis of six aristolochic acids and five aristolactams in herbal plants and their preparations by high-performance liquid chromatography-diode array detection-fluorescence detection. J. Chromatogr. A?2008, 1182, 85–92.
[22]
Chen, H.J.; Li, X.; Chen, J.W.; Guo, S.; Cai, B.C. Simultaneous determination of eleven bioactive compounds in Saururus chinensis from different harvesting seasons by HPLC-DAD. J. Pharm. Biomed. Anal.?2010, 51, 1142–1146, doi:10.1016/j.jpba.2009.11.004.
[23]
Priestap, H.A.; de los Santos, C.; Quirke, J.M. Identification of a reduction product of aristolochic acid: implications for the metabolic activation of carcinogenic aristolochic acid. J. Nat. Prod.?2011, 73, 1979–1986.
[24]
Schmeiser, H.H.; Bieler, C.A.; Wiessler, M.; van Ypersele de Strihou, C.; Cosyns, J.-P. Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res.?1996, 5, 2025–2028.
[25]
Zhou, S.; Koh, H.-L.; Gao, Y.; Gong, Z.-Y.; Lee, E.J.D. Herbal bioactivation: The good, the bad and the ugly. Life Sci.?2004, 74, 935–968, doi:10.1016/j.lfs.2003.09.035.
[26]
Pinto, C.F.; Urzúa, A.; Niemeyer, H.M. Sequestration of aristolochic acids from meridic diets by larvae of Battus polydamas archidamas (papilionidae: troidini). Eur. J. Entomol.?2011, 108, 41–45.
[27]
Sato, F.; Hashimoto, T.; Hachiya, A.; Tamura, K.; Choi, K-B.; Morishige, T.; Fujimoto, H.; Yamada, Y. Metabolic engineering of plant alkaloid biosynthesis. Proc. Natl. Acad. Sci. USA?2001, 98, 367–372.
[28]
Alali, F.Q.; Tawaha, K.; Shehadeh, M.B.; Telfah, S. Phytochemical and biological investigation of Aristolochia maurorum L. Z. Naturforsch C?2006, 61, 685–691.
[29]
Lajide, L.; Escoubas, P.; Mizutani, J. Antifeedant activity of metabolites of Aristolochia albida against the tobacco cutworm, Spodoptera litura. J. Agric. Food Chem.?1993, 41, 669–673, doi:10.1021/jf00028a031.
[30]
Jeude, S.E. Quality vs. quantity: The effect of aristolochic acids on preference and performance of a non-specialist herbivore. Purs. J. Undergrad. Res. Univ. Tenn.?2011, 2, 109–119.