The synthesis of diazonium tetrachloroaurate(III) complexes [R-4-C 6H 4N≡N]AuCl 4 involves protonation of anilines CN-4-C 6H 4NH 2, C 8F 17-4-C 6H 4NH 2, and C 6H 13-4-C 6H 4NH 2 with tetrachloroauric acid H[AuCl 4] 3H 2O in acetonitrile followed by one-electron oxidation using [NO]PF 6. FT-IR shows the diazonium stretching frequency at 2277 cm ?1 (CN), 2305 cm ?1 (C 8F 17), and 2253 cm ?1 (C 6H 13). Thermogravimetric Analysis (TGA) shows the high stabilities of the electron-withdrawing substituents C 8F 17 and CN compared with the electron-donating substituent C 6H 13. Residual Gas Analysis (RGA) shows the release of molecular nitrogen as the main gas residue among other small molecular weight chlorinated hydrocarbons and chlorobenzene. Temperature-Dependent X-Ray Powder Diffraction (TD-XRD) shows the thermal decomposition in C 6H 13 diffraction patterns at low temperature of 80 °C which supports the TGA and RGA (TGA-MS) conclusions. X-ray structure shows N≡N bond distance of approximately 1.10 ? and N≡N-C bond angle of 178°.
References
[1]
Chehimi, M.M. Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science; Wiley-VCH: Weinheim, Germany, 2012.
[2]
Sun, Z.; James, D.K.; Tour, J.M. Graphene Chemistry: Synthesis and Manipulation. J. Phys. Chem. Lett. 2011, 2, 2425–2432.
[3]
Breton, T.; Be?langer, D. Modification of Carbon Electrode with Aryl Groups having an Aliphatic Amine by Electrochemical Reduction of in situ Generated Diazonium Cations. Langmuir 2008, 24, 8711–8718, doi:10.1021/la800578h.
[4]
Allongue, P.; Delamar, M.; Desbat, B.; Fagebaume, O.; Hitmi, R.; Pinson, J.; Saveant, J.M. Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. J. Am. Chem. Soc. 1997, 119, 201–207, doi:10.1021/ja963354s.
Lehr, J.; Garrett, D.J.; Paulik, M.G.; Flavel, B.S.; Brooksby, P.A.; Williamson, B.E.; Downard, A.J. Patterning of Metal, Carbon, and Semiconductor Substrates with Thin Organic Films by Microcontact Printing with Aryldiazonium Salt Inks. Anal. Chem. 2010, 82, 7027–7070, doi:10.1021/ac101785c.
[7]
Aswal, D.K.; Koiry, S.P.; Jousselme, B.; Gupta, S.K.; Palacin, S.; Yakhmi, J.V. Hybrid Molecule-on-Silicon Nanoelectronics: Electrochemical Processes for Grafting and Printing of Monolayers. Physica E 2009, 41, 325–344, doi:10.1016/j.physe.2008.11.001.
[8]
Gooding, J.J.; Ciampi, S. The Molecular Level Modification of Surfaces: From Self-Assembled Monolayers to Complex Molecular Assemblies. Chem. Soc. Rev. 2011, 40, 2704–2718.
[9]
Bélanger, D.; Pinson, J. Electrografting: A Powerful Method for Surface Modification. Chem. Soc. Rev. 2011, 40, 3995–4048, doi:10.1039/c0cs00149j.
[10]
Combellas, C.; Delamar, M.; Kanoufi, F.; Pinson, J.; Podvorica, F.I. Spontaneous Grafting of Iron Surfaces by Reduction of Aryldiazonium Salts in Acidic or Neutral Aqueous Solution. Application to the Protection of Iron against Corrosion. Chem. Mater. 2005, 17, 3968–3975, doi:10.1021/cm050339q.
Gehan, H.; Fillaud, L.; Felidj, N.; Aubard, J.; Lang, P.; Chehimi, M.M.; Mangeney, C.A. General Approach Combining Diazonium Salts and Click Chemistries for Gold Surface Functionalization by Nanoparticle Assemblies. Langmuir 2010, 26, 3975–3980.
[14]
Mirkhalaf, F.; Paprotny, J.; Schiffrin, D.J. Synthesis of Metal Nanoparticles Stabilized by Metal-Carbon Bonds. J. Am. Chem. Soc. 2006, 128, 7400–7401, doi:10.1021/ja058687g.
[15]
Ghosh, D.; Chen, S.W. Palladium Nanoparticles Passivated by Metal–Carbon Covalent Linkages. J. Mater. Chem. 2008, 18, 755–762, doi:10.1039/b715397j.
[16]
Ratheesh Kumar, V.K.; Gopidas, K.R. Synthesis and Characterization of Gold-Nanoparticle-Cored Dendrimers Stabilized by Metal–Carbon Bonds. Chem. Asian J. 2010, 5, 887–896, doi:10.1002/asia.200900388.
[17]
Ratheesh Kumar, V.K.; Gopidas, K.R. Palladium Nanoparticle-Cored G1-Dendrimer Stabilized by Carbon-Pd Bonds: Synthesis, Characterization and use as Chemoselective, Room Temperature Hydrogenation Catalyst. Tetrahedron Lett. 2011, 52, 3102–3105, doi:10.1016/j.tetlet.2011.04.011.
[18]
Ratheesh Kumar, V.K.; Krishnakumar, S.; Gopidas, K.R. Synthesis, Characterization and Catalytic Applications of Palladium Nanoparticle-Cored Dendrimers Stabilized by Metal–Carbon Bonds. Eur. J. Org. Chem. 2012, 3447–3458.
[19]
Laurentius, L.; Stoyanov, S.R.; Gusarov, S.; Kovalenko, A.; Du, R.; Lopinski, G.P.; McDermott, M.T. Diazonium-Derived Aryl Films on Gold Nanoparticles: Evidence for a Carbon-Gold Covalent Bond. ACS Nano 2011, 5, 4219–4227, doi:10.1021/nn201110r.
[20]
Adenier, A.; Bernard, M.C.; Chehimi, M.M.; Cabet-Deliry, E.; Desbat, B.; Fagebaume, O.; Pinson, J.; Podvorica, F. Covalent Modification of Iron Surfaces by Electrochemical Reduction of Aryldiazonium Salts. J. Am. Chem. Soc. 2001, 123, 4541–4549, doi:10.1021/ja003276f.
[21]
Nakamura, T.; Suzuki, M.; Ishihara, M.; Ohana, T.; Tanaka, A.; Koga, Y. Photochemical Modification of Diamond Films: Introduction of Perfluorooctyl Functional Groups on Their Surface. Langmuir 2004, 20, 5846–5849, doi:10.1021/la0499362.
[22]
Harper, J.C.; Polsky, R.; Wheeler, D.R.; Brozik, S.M. Maleimide-Activated Aryl Diazonium Salts for Electrode Surface Functionalization with Biological and Redox Active Molecules. Langmuir 2008, 24, 2206–2211, doi:10.1021/la702613e.
[23]
Corgier, B.P.; Marquette, C.A.; Blum, L.J. Diazonium-Protein Adducts for Graphite Electrode Microarrays Modification: Direct and Addressed Electrochemical Immobilization. J. Am. Chem. Soc. 2005, 127, 18328–18332, doi:10.1021/ja056946w.
[24]
Mévellec, V.; Roussel, S.; Tessier, L.; Chancolon, J.; Mayne-L’Hermite, M.; Deniau, G.; Viel, P.; Palacin, S. Grafting Polymers on Surfaces: A New Powerful and Versatile Diazonium Salt-Based One-Step Process in Aqueous Media. Chem. Mater. 2007, 19, 6323–6330, doi:10.1021/cm071371i.
[25]
Garrett, D.J.; Lehr, J.; Miskelly, G.M.; Downard, A.J. Microcontact Printing using the Spontaneous Reduction of Aryldiazonium Salts. J. Am. Chem. Soc. 2007, 129, 15456–15457, doi:10.1021/ja0775321.
[26]
Hossain, M.Z.; Walsh, M.A.; Hersam, M.C. Scanning Tunneling Microscopy, Spectroscopy, and Nanolithography of Epitaxial Graphene Chemically Modified with Aryl Moieties. J. Am. Chem. Soc. 2010, 132, 15399–15403, doi:10.1021/ja107085n.
[27]
Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M. Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Chem. Rev. 2006, 106, 4622–4643, doi:10.1021/cr0509861.
[28]
Patai, S. The Chemistry of Diazonium and Diazo Groups. In The Chemistry of Functional Groups; John Wiley & Sons Inc: New York, NY, USA, 1978; Volume 2.
[29]
Saunders, K.H. The Aromatic Diazo-Compounds and Their Technical Applications; Edward Arnold & Co.: London, UK, 1949.
[30]
Zollinger, H. Diazotization of Amines and Dediazoniation of Diazonium Ions. In The Chemistry of Amino, Nitroso, Nitro and Related Groups; Patai, S., Ed.; Wiley & Sons: New York, NY, USA, 1996; pp. 636–637.
[31]
Chamoulaud, G.; Bélanger, D. Spontaneous Derivatization of a Copper Electrode with in situ Generated Diazonium Cations in Aprotic and Aqueous Media. J. Phys. Chem. C 2007, 111, 7501–7507, doi:10.1021/jp0704012.
[32]
Glaser, R.; Horan, C.J. Benzenediazonium Ion. Generality, Consistency, and Preferability of the Electron Density Based Dative Bonding Model. J. Org. Chem. 1995, 60, 7518–7528, doi:10.1021/jo00128a026.
[33]
Glaser, R.; Horan, C.J.; Lewis, M.; Zollinger, H. σ-Dative and π-Backdative Phenyl Cation–Dinitrogen Interactions and Opposing Sign Reaction Constants in Dual Substituent Parameter Relations. J. Org. Chem. 1999, 64, 902–913, doi:10.1021/jo9818430.
[34]
Gokel, G.W.; Cram, D.J. Molecular Complexation of Arenediazonium and Benzoyl Cations by Crown Ethers. J. Chem. Soc. Chem. Commun. 1973, 481–482, doi:10.1039/c39730000481.
[35]
Kuokkanen, T.; Haataja, A. Effect of Solvent on the Complexation and Thermal Stability of Benzenediazonium Tetrafluoroborate in the Presence of Crown Ethers. Acta Chem. Scand. 1993, 47, 872–876, doi:10.3891/acta.chem.scand.47-0872.
[36]
Morosin, B.; Lingafelter, E.C. The Crystal Structure of Tetramethylammonium Tetrachlorozincate and Tetrachlorocobaltate. Acta Crystallogr. 1959, 12, 611–612, doi:10.1107/S0365110X59001797.
[37]
Doctorovich, F.; Escola, N.; Trápani, C.; Estrin, D.A.; Lebrero, M.C.G.; Turjanski, A.G. Stabilization of Aliphatic and Aromatic Diazonium Ions by Coordination: An Experimental and Theoretical Study. Organometallics 2000, 19, 3810–3817, doi:10.1021/om000004c.
[38]
Mohamed, A.A. Advances in the Coordination Chemistry of Nitrogen Ligand Complexes of Coinage Metals. Coord. Chem. Rev. 2010, 254, 1918–1947, doi:10.1016/j.ccr.2010.02.003.
Gougoutas, J.Z.; Johnson, J. Structure and Solid-State Chemistry of 3-Carboxy-2-Naphthalenediazonium Bromide. J. Am. Chem. Soc. 1978, 100, 5816–5820, doi:10.1021/ja00486a037.
[41]
Greenberg, B.; Okaya, Y. Crystal and Molecular Structure of 2-Diazonium-4-Phenolsulfonate Monohydrate, C6H3N2+.SO3-.OH.H2O. Acta Cryst. B 1969, 25, 2101–2108, doi:10.1107/S056774086900519X.
[42]
Mostad, A.; R?mming, C. The Crystal Structure of p-Benzenebisdiazonium Tetrachlorozincate. Acta Chem. Scand. 1968, 22, 1259–1266, doi:10.3891/acta.chem.scand.22-1259.
[43]
Romming, C. The Structure of Benzene Diazonium Chloride. Acta Chem. Scand. 1963, 17, 1444–1454, doi:10.3891/acta.chem.scand.17-1444.
[44]
Romming, C. The Crystal Structure of p-Benzenediazonium Sulphonate. Acta Chem. Scand. 1972, 26, 523–533, doi:10.3891/acta.chem.scand.26-0523.
[45]
Romming, C.; Tjornhom, T. The Crystal Structure of the 1:1 Complex Benzenediazonium Chloride-Acetic Acid. Acta Chem. Scand. 1968, 22, 2934–2942, doi:10.3891/acta.chem.scand.22-2934.
[46]
Filimonov, V.D.; Trusova, M.; Postnikov, P.; Krasnokutskaya, E.A.; Lee, Y.M.; Hwang, H.Y.; Kim, H.; Chi, K.-W. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Org. Lett. 2008, 10, 3961–3964, doi:10.1021/ol8013528.
[47]
Pauling, L. The Nature of the Chemical Bond, 3rd ed. ed.; Cornell University Press: Ithaca, NY, USA, 1960.
[48]
Gremillion, A.F.; Jonassen, H.B.; O’Connor, R.J. The Thermal Stabilities and Infrared Spectra of some Metal Salt Stabilized Diazonium Salts. J. Am. Chem. Soc. 1959, 81, 6134–6138, doi:10.1021/ja01532a008.
[49]
Savitsky, A.; Siggia, S. Analysis of Primary Aromatic Amines and Nitrite by Diazotization and Pyrolysis Gas Chromatography. Anal. Chem. 1974, 46, 149–152, doi:10.1021/ac60337a041.
[50]
SMART, Version 4.043. Software for the CCD Detector System; Bruker Analytical X-ray Systems: Madison, WI, USA, 1995.
[51]
SAINT, Version 4.035Software for the CCD Detector System. Bruker Analytical X-ray Systems: Madison, WI, USA, 1995.
[52]
Blessing, R.H. SADABS. Program for absorption corrections using Siemens CCD based on the method of Robert Blessing. Acta Cryst. A 1995, 51, 33, doi:10.1107/S0108767394005726.
[53]
Scheldrick, G.M. SHELXS-97. Program for the Solution of Crystal Structure; University of G?ttingen: G?ttingen, Germany, 1997.
[54]
SHELXTL 5.03. Program Library for Structure Solution and Molecular Graphics; Bruker Analytical X-ray Systems: Madison, WI, USA, 1995.