We report the extension of the series of {BIPM TMSH} ? (BIPM R = C{PPh 2NR} 2, TMS = trimethylsilyl) derived rare earth methanides by the preparation of [Ln(BIPM TMSH)(I) 2(THF)] (Ln = Nd, Gd, Tb), 1a–c, in 34–50% crystalline yields via the reaction of [Ln(I) 3(THF) 3.5] with [Cs(BIPM TMSH)]. Similarly, we have extended the range of {BIPM MesH} ? (Mes = 2,4,6-trimethylphenyl) derived rare earth methanides with the preparation of [Gd(BIPM MesH)(I) 2(THF) 2], 3, (49%) and [Yb(BIPM MesH)(I) 2(THF)], 4, (26%), via the reaction of [Ln(I) 3(THF) 3.5] with [{K(BIPM MesH)} 2]. Attempts to prepare dysprosium and erbium analogues of 3 or 4 were not successful, with the ion pair species [Ln(BIPM MesH) 2][BIPM MesH] (Ln ?= Dy, Er), 5a–b, isolated in 31–39% yield. The TMEDA ( N', N', N", N"-tetramethylethylenediamine) adducts [Ln(BIPM MesH)(I) 2(TMEDA)] (Ln = La, Gd), 6a–b, were prepared in quantitative yield via the dissolution of [La(BIPM MesH)(I) 2(THF)] or 3 in a TMEDA/THF solution. The reactions of [Ln(BIPM MesH)(I) 2(THF)] [Ln? = La, Ce, Pr, and Gd ( 3)] or 6a–b with a selection of bases did not afford [La(BIPM Mes)(I)(S) n] (S = solvent) as predicted, but instead led to the isolation of the heteroleptic complexes [Ln(BIPM Mes)(BIPM MesH)] (Ln = La, Ce, Pr and Gd), 7a– d, in low yields due to ligand scrambling.
References
[1]
Aparna, K.; Ferguson, M.; Cavell, R.G. A Monomeric Samarium Bis(Iminophosphorano) Chelate Complex with a Sm=C Bond. J. Am. Chem. Soc. 2000, 122, 726–727, doi:10.1021/ja9936114.
[2]
Liddle, S.T.; Mills, D.P.; Wooles, A.J. Bis(phosphorus-stabilized)methanide and methandiide derivatives of Group 1–5 and f-element metals. Organomet. Chem. 2010, 36, 29–55.
[3]
Liddle, S.T.; Mills, D.P.; Wooles, A.J. Early metal bis(phosphorus-stabilized)carbene chemistry. Chem. Soc. Rev. 2011, 40, 2164–2176, doi:10.1039/c0cs00135j.
[4]
Roesky, P.W. Bis(phosphinimino)methanides as ligands in the chemistry of the rare earth elements. Z. Anorg. Allg. Chem. 2006, 632, 1918–1926, doi:10.1002/zaac.200600070.
[5]
Rast?tter, M.; Zulys, A.; Roesky, P.W. A bis(phosphinimino)methanide lanthanum amide as catalyst for the hydroamination/cyclisation, hydrosilylation and sequential hydroamination/hydrosilylation catalysis. Chem. Commun. 2006, 874–876, doi:10.1039/b514242c.
[6]
Ahmed, S.A.; Hill, M.S.; Hitchcock, P.B. Synthesis and M?Cγ Hemilability of Group 2 Bis(phosphinimino)methanides. Organometallics 2006, 25, 394–402, doi:10.1021/om050811h.
Mills, D.P.; Soutar, L.; Lewis, W.; Blake, A.J.; Liddle, S.T. Regioselective C-H Activation and Sequential C-C and C-O Bond Formation Reactions of Aryl Ketones Promoted by an Yttrium Carbene. J. Am. Chem. Soc. 2010, 132, 14379–14381, doi:10.1021/ja107958u.
[9]
Mills, D.P.; Soutar, L.; Cooper, O.J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Reactivity of the Yttrium Alkyl Carbene Complex [Y(BIPM)(CH2C6H5)(THF)] (BIPM = {C(PPh2NSiMe3)2})2?: From Insertions, Substitutions, and Additions to Nontypical Transformations. Organometallics 2013, 32, 1251–1264, doi:10.1021/om3010178.
[10]
Mills, D.P.; Lewis, W.; Blake, A.J.; Liddle, S.T. Reactivity Studies of a T-Shaped Yttrium Carbene: C–F and C–O Bond Activation and C=C Bond Formation Promoted by [Y(BIPM)(I)(THF)2] (BIPM = C(PPh2NSiMe3)2). Organometallics 2013, 32, 1239–1250, doi:10.1021/om301016j.
Liddle, S.T.; McMaster, J.; Green, J.C.; Arnold, P.L. Synthesis and structural characterisation of an yttrium-alkyl-alkylidene. Chem. Commun. 2008, 1747–1749.
[18]
Mills, D.P.; Cooper, O.J.; McMaster, J.; Lewis, W.; Liddle, S.T. Synthesis and reactivity of the yttrium-alkyl-carbene complex [Y(BIPM)(CH2C6H5)(THF)] (BIPM = {C(PPh2NSiMe3)2}). Dalton Trans. 2009, 4547–4555.
[19]
Cotton, S. Lanthanide and Actinide Chemistry; Wiley: Chichester, UK, 2006.
[20]
Gamer, M.T.; Dehnen, S.; Roesky, P.W. Synthesis and Structure of Yttrium and Lanthanide Bis(phosphinimino)methanides. Organometallics 2001, 20, 4230–4236, doi:10.1021/om0102955.
[21]
Evans, W.J.; Lee, D.S.; Rego, D.B.; Perotti, J.M.; Kozimor, S.A.; Moore, E.K.; Ziller, J.W. Expanding Dinitrogen Reduction Chemistry to Trivalent Lanthanides via the LnZ3/Alkali Metal Reduction System:? Evaluation of the Generality of Forming Ln2(μ-η2:η2-N2) Complexes via LnZ3/K. J. Am. Chem. Soc. 2004, 126, 14574–14582, doi:10.1021/ja046047s.
Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, A32, 751–767, doi:10.1107/S0567739476001551.
[24]
Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B 2002, 58, 380–388, doi:10.1107/S0108768102003890.
[25]
Izod, K.; Liddle, S.T.; Clegg, W. A Convenient Route to Lanthanide Triiodide THF Solvates. Crystal Structures of LnI3(THF)4 [Ln = Pr] and LnI3(THF)3.5 [Ln = Nd, Gd, Y]. Inorg. Chem. 2004, 43, 214–218, doi:10.1021/ic034851u.
[26]
Hill, M.S.; Hitchcock, P.B.; Karagouni, S.M. A. Group 1 and 13 complexes of aryl-substituted bis(phosphinimino)methyls. J. Organomet. Chem. 2004, 689, 722–730, doi:10.1016/j.jorganchem.2003.11.030.
[27]
Hill, M.S.; Hitchcock, P.B. Synthesis of a homoleptic Sm(II) bis(phosphinimino)methanide. Dalton Trans. 2003, 4570–4571, doi:10.1039/b313034g.
[28]
Evans, D.F. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. (Resumed) 1959, 2003–2005, doi:10.1039/jr9590002003.
[29]
Vleck, J.H.V. Theory of Electric and Magnetic Susceptibilities; Oxford University Press: Oxford, UK, 1932.
[30]
Schlosser, M.; Hartmann, J. Transmetalation and Double Metal Exchange: A Convenient Route to Organolithium Compounds of the Benzyl and Allyl Type. Angew. Chem. Int. Ed. Engl. 1973, 12, 508–509, doi:10.1002/anie.197305082.
[31]
Hitchcock, P.B.; Lappert, M.F.; Maron, L.; Protchenko, A.V. Lanthanum Does Form Stable Molecular Compounds in the +2 Oxidation State. Angew. Chem. Int. Ed. 2008, 47, 1488–1491, doi:10.1002/anie.200704887.
[32]
Crystals of 7b 3C7H8 were identified by unit cell check comparisons to La, Pr and Gd analogues
[33]
Spek, A.L. Platon. version 1.17, University of Utrecht, Utrecht, The Netherlands, 2000.
[34]
SMART and SAINT Bruker AXS Inc. Madison, WI, USA, 2001.