The reaction of 1,8-diaminooctane with hydroiodic acid in the presence of iodine gave a new polyiodide-containing salt: 1,8-diaminiumoctane bis(triiodide), (H 3N-(CH 2) 8-NH 3)[I 3] 2. The title compound has been characterized by crystallographic and spectroscopic methods. The polyiodide ion is the first example of a hydrogen bonded I 6 2? dianion consisting of two very asymmetric triiodide components with I?I distances of 2.7739(4) and 3.1778(4) ? interacting by a weak halogen bond (I···I: 3.5017(2) ?). The structural parameters of the triiodide anions, derived from X-ray crystallographic data, are in good agreement with the Raman and Far-IR spectroscopic results.
References
[1]
Tebbe, K.-F. Polyhalogen Cations and Polyhalide Anions. In Homoatomic Rings, Chains and Macromolecules of Main-Group Elements, 1st ed.; Rheingold, A.L., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 551–606.
[2]
Coppens, P. Structural Aspects of Iodine-Containing Low-Dimensional Materials. In Extended Linear Chain Compounds; Miller, J.S., Ed.; Plenum Press: New York, NY, USA, 1982; Volume 1, pp. 333–356.
Svensson, P.H.; Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684, doi:10.1021/cr0204101.
[5]
Kloo, L.; Rosdahl, J.; Svensson, P.H. On the intra- and intermolecular bonding in polyiodides. Eur. J. Inorg. Chem. 2002, 1203–1209.
Resnati, G.; Metrangolo, P. Halogen Bonding. In Encyclopedia of Supramolecular Chemistry; Atwood, J.L., Steed, J.W., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2007; Volume 1, pp. 628–635.
[8]
Hasell, T.; Schmidtmann, M.; Cooper, A.I. Molecular doping of porous organic cages. J. Am. Chem. Soc. 2011, 133, 14920–14923.
[9]
Yin, Z.; Wang, Q.-X.; Zeng, M.-H. Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal–organic framework. J. Am. Chem. Soc. 2012, 134, 4857–4863, doi:10.1021/ja211381e.
[10]
Gomes, A.S.P.; Visscher, L.; Bolvin, H.; Saue, T.; Knecht, S.; Fleig, T.; Eliav, E. The electronic structure of the triiodide ion from relativistic correlated calculations: A comparison of different methodologies. J. Chem. Phys. 2010, 133, 064305.
[11]
Groenewald, F.; Esterhuysen, C.; Dillen, J. Extensive theoretical investigation: Influence of the electrostatic environment on the I3-···I3-–anion–anion interaction. Theor. Chem. Acc. 2012, 131, 1–12.
[12]
Otsuka, M.; Mori, H.; Kikuchi, H.; Takano, K. Density functional theory calculations of iodine cluster anions: Structures, chemical bonding nature, and vibrational spectra. Comput. Theor. Chem. 2011, 973, 69–75, doi:10.1016/j.comptc.2011.07.002.
[13]
Clark, T.; Hennemann, M.; Murray, J.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2007, 13, 291–296, doi:10.1007/s00894-006-0130-2.
O′Regan, B.; Gr?tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740, doi:10.1038/353737a0.
[17]
Gorlov, S.; Kloo, L. Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans. 2008, 2655–2666, doi:10.1039/b716419j.
[18]
Jeon, S.; Jo, Y.; Kim, K.-J.; Jun, Y.; Han, C.-H. High performance dye-sensitized solar cells with alkylpyridinium iodide salts in electrolytes. Appl. Mater. Interfaces 2011, 3, 512–516, doi:10.1021/am101093b.
[19]
Rowley, J.G.; Meyer, G.J. Di- and tri-iodide reactivity at illuminated titanium dioxide interfaces. J. Phys. Chem. C 2011, 115, 6156–6161, doi:10.1021/jp1114866.
[20]
Yang, Y.; Sun, R.; Shi, C.; Wu, Y.; Xia, M. Application of diaminium iodides in binary ionic liquid electrolytes for dye-sensitized solar cells. Int. J. Photoenergy 2011, 986869:1–986869:5.
[21]
Thorsm?lle, V.K.; Topgaard, D.; Brauer, J.C.; Zakeeruddin, S.M.; Lindman, B.; Gr?tzel, M.; Moser, J.-E. Conduction through viscoelastic phase in a redox-active ionic liquid at reduced temperatures. Adv. Mater. 2012, 24, 781–784.
Yourey, W.; Weinstein, L.; Amatucci, G.G. Structure and charge transport of polyiodide networks for electrolytically in-situ formed batteries. Solid State Ionics 2011, 204, 80–86.
[24]
Tyagi, D.; Varma, S.; Bhattacharya, K.; Jain, D.; Tripathi, A.K.; Pillai, C.G.S.; Bharadwaj, S.R. Iodine speciation studies on Bunsen reaction of S–I cycle using spectroscopic techniques. Int. J. Hydrogen Energy 2012, 37, 3621–3625.
[25]
Alvarez, S.; Novoa, J.; Mota, F. The mechanism of electrical conductivity along polyhalide chains. Chem. Phys. Lett. 1986, 132, 531–534, doi:10.1016/0009-2614(86)87118-4.
[26]
Marks, T.J.; Kalina, D.W. Highly Conductive Halogenated Low-Dimensional Materials. In Extended Linear Chain Compounds; Miller, J.S., Ed.; Plenum Press: New York, NY, USA, 1982; Volume 1, pp. 197–331.
[27]
Hosseini, M.W. Molecular tectonics: From molecular recognition of anions to molecular networks. Coord. Chem. Rev. 2003, 240, 157–166, doi:10.1016/S0010-8545(03)00021-3.
[28]
Aaker?y, C.B.; Champness, N.R.; Janiak, C. Recent advances in crystal engineering. CrystEngComm 2010, 12, 22–43, doi:10.1039/b919819a.
[29]
Brunet, P.; Simard, M.; Wuest, J.D. Molecular tectonics. Porous hydrogen-bonded networks with unprecedented structural integrity. J. Am. Chem. Soc. 1997, 119, 2737–2738, doi:10.1021/ja963905e.
[30]
Resnati, G.; Metrangolo, P. Tectons: Definition and Scope. In Encyclopedia of Supramolecular Chemistry; Atwood, J.L., Steed, J.W., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2007; Volume 1, pp. 1484–1492.
[31]
Svensson, P.H.; Gorlov, M.; Kloo, L. Dimensional caging of polyiodides. Inorg. Chem. 2008, 47, 11464–11466, doi:10.1021/ic801820s.
[32]
Abate, A.; Brischetto, M.; Cavallo, G.; Lahtinen, M.; Metrangolo, P.; Pilati, T.; Radice, S.; Resnati, G.; Rissanen, K.; Terraneo, G. Dimensional encapsulation of I-???I2???I- in an organic salt crystal matrix. Chem. Commun. 2010, 46, 2724–2726, doi:10.1039/b924423a.
[33]
Meyer, M.K.; Graf, J.; Reiss, G.J. Dimer oder nicht dimer, das ist hier die Frage: Zwei benachbarte I3--Ionen eingeschlossen in Hohlr?umen einer komplexen Wirtsstruktur. Z. Naturforsch. B 2010, 65, 1462–1466. (In German).
[34]
García, M.D.; Martí-Rujas, J.; Metrangolo, P.; Peinador, C.; Pilati, T.; Resnati, G.; Terraneo, G.; Ursini, M. Dimensional caging of polyiodides: Cation-templated synthesis using bipyridinium salts. CrystEngComm 2011, 13, 4411–4416, doi:10.1039/c0ce00860e.
[35]
Reiss, G.J.; van Megen, M. Two new polyiodides in the 4,4’-bipyridinium diiodide/iodine system. Z. Naturforsch. B 2012, 67, 5–10.
[36]
Van Megen, M.; Reiss, G.J. The pseudosymmetric structure of bis(pentane-1,5-diaminium) iodide tris(triiodide). Acta Cryst. E 2012, 68, o1331–o1332, doi:10.1107/S1600536812014420.
[37]
Müller, M.; Albrecht, M.; Gossen, V.; Peters, T.; Hoffmann, A.; Raabe, G.; Valkonen, A.; Rissanen, K. Anion–π interactions in salts with polyhalide anions: Trapping of I42?. Chem. Eur. J. 2010, 16, 12446–12453, doi:10.1002/chem.201001534.
[38]
Garzón-Tovar, L.; Duarte-Ruiz, á.; Wurst, K. Non-classical hydrogen bond (CH???I) directed self-assembly formation of a novel 1D supramolecular polymer, based on a copper complex [Cu{(CH3)2SO}6]I4. Inorg. Chem. Commun. 2013, 32, 64–67, doi:10.1016/j.inoche.2013.03.024.
[39]
Redel, E.; R?hr, C.; Janiak, C. An inorganic starch–iodine model. J. Chem. Soc. Chem. Commun. 2009, 2103–2105.
[40]
Takeoka, Y.; Fukasawa, M.; Matsui, T.; Kikuchi, K.; Rikukawa, M.; Sanui, K. Intercalated formation of two-dimensional and multi-layered perovskites in organic thin films. Chem. Commun. 2005, 378–380.
[41]
Frank, W.; Reiss, G.J. Bis(1,6-diammoniohexane) tetraaquahydrogen(1+) hexachlororhodate(III) dichloride, [H3N(CH2)6NH3]2[H9O4][RhCl6]Cl2: Chain-like [H9O4]+ ions enclosed in the cavities of a complex organic-inorganic framework. Inorg. Chem. 1997, 36, 4593–4595, doi:10.1021/ic970337a.
[42]
Jiang, J.; Yu, J.; Corma, A. Extra-large-pore zeolites: Bridging the gap between micro and mesoporous structures. Angew. Chem. Int. Ed. 2010, 49, 3120–3145, doi:10.1002/anie.200904016.
[43]
Vizi, M.Z.; Knobler, C.B.; Owen, J.J.; Khan, M.I.; Schubert, D.M. Structures of self-assembled nonmetal borates derived from α,ω-diaminoalkanes. Cryst. Growth Des. 2006, 6, 538–545, doi:10.1021/cg0504915.
[44]
Seidlhofer, B.; Pienack, N.; Bensch, W. Synthesis of inorganic-organic hybrid thiometallate materials with a special focus on thioantimonates and thiostannates and in situ X-Ray Scattering Studies of their Formation. Z. Naturforsch. B 2010, 65, 937–975.
[45]
Lu, J.Y.; Schauss, V. A novel nanostructured open-channel coordination polymer with an included fused-polyiodide ring. Eur. J. Inorg. Chem. 2002, 1945–1947.
[46]
Reiss, G.J.; van Megen, M. Synthesis, structure and spectroscopy of a new polyiodide in the α,ω-diazaniumalkane iodide/iodine system. Z. Naturforsch. B 2012, 67, 447–451.
[47]
Reiss, G.J. Personal communication to the Cambridge Structural Databasedeposition number CCDC 786078. Cambridge, UK, 2010.
[48]
Reiss, G.J.; Engel, J.S. Crystal Engineering of a new layered polyiodide using 1,9-diammoniononane as a flexible template cation. Z. Naturforsch. B 2004, 59, 1114–1117.
[49]
Reiss, G.J.; Engel, J.S. Hydrogen bonded 1,10-diammoniodecane—An example of an organo-template for the crystal engineering of polymeric polyiodides. CrystEngComm 2002, 4, 155–161, doi:10.1039/b203499a.
[50]
Rossi, M.; Marzilli, L.G.; Kistenmacher, T.J. Protonated 1-methylcytosine triiodide. Acta Cryst. B 1978, 34, 2030–2033, doi:10.1107/S0567740878007293.
[51]
Tebbe, K.-F.; Freckmann, B.; Horner, M.; Hiller, W.; Str?hle, J. Verfeinerung der Kristallstruktur des Ammoniumtriiodids, NH4I3. Acta Cryst. C 1985, 41, 660–663, doi:10.1107/S0108270185005017.
[52]
Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Cryst. B 1990, 46, 256–262, doi:10.1107/S0108768189012929.
[53]
Deplano, P.; Ferraro, J.R.; Mercuri, M.L.; Trogu, E.F. Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts. Coord. Chem. Rev. 1999, 188, 71–95, doi:10.1016/S0010-8545(98)00238-0.
[54]
Ambrosetti, R.; Bellucci, G.; Bianchini, R.; Bigoli, F.; Deplano, P.; Pellinghelli, M.A.; Trogu, E.F. Kinetic and mechanistic study of the reaction between dithiomalonamides and diiodine. Crystal structure of the compounds 3,5-bis(ethylamino)-1,2-dithiolylium triiodide and 3,5-bis(morpholino)-1,2-dithiolylium iodide monohydrate. J. Chem. Soc., Perkin Trans. 1991, 2, 339–347.
[55]
Kalina, D.W.; Lyding, J.W.; Ratajack, M.T.; Kannewurf, C.R.; Marks, T.J. Bromine as a partial oxidant. Oxidation state and charge transport in brominated nickel and palladium bis(diphenylglyoximates). A comparison with the iodinated materials and resonance Raman structure-spectra correlations for polybromides. J. Am. Chem. Soc. 1980, 102, 7854–7862.
[56]
Egli, R.A. Neue Bestimmungsmethode für organisch gebundenes Iod, Brom und Chlor. Z. Anal. Chem. 1969, 247, 39–41, doi:10.1007/BF00676499.
[57]
CrysAlisPro. version 1.171.33.42; Oxford Diffraction Ltd.: Oxford, UK, 2009.
[58]
Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122, doi:10.1107/S0108767307043930.
[59]
Pratt, B.C.; Coyle, J.A.; Ibers, J. Redetermination of the structure of nitrosylpenta-amminecobalt(III) dichloride. J. Chem. Soc. A 1971, 2146–2151, doi:10.1039/j19710002146.
[60]
Peuronen, A.; Valkonen, A.; Kortelainen, M.; Rissanen, K.; Lahtinen, M. Halogen bonding-based “catch and release”: Reversible solid-state entrapment of elemental iodine with monoalkylated dabco salts. Cryst. Growth Des. 2012, 12, 4157–4169, doi:10.1021/cg300669t.
[61]
Zeng, M.-H.; Wang, Q.-X.; Tan, Y.-X.; Hu, S.; Zhao, H.-X.; Long, L.-S.; Kurmoo, M. Rigid pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563.
[62]
Hu, J.; Wang, D.; Guo, W.; Du, S.; Tang, Z.K. Reversible control of the orientation of iodine molecules inside the AlPO4–11 crystals. J. Phys. Chem. C 2012, 116, 4423–4430.
[63]
Lee, S.; Chen, B.; Fredrickson, D.C.; DiSalvo, F.J.; Lobkovsky, E.; Adams, J.A. Crystal structures of (pyrene)10(i3?)4(i2)10 and [1,3,6,8-tetrakis(methylthio)pyrene]3(I3?)3(I2)7: structural trends in fused aromatic polyiodides. Chem. Mater. 2003, 15, 1420–1433, doi:10.1021/cm020651p.